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Abstract

We describe a computer program to assist a clinician
with assessing the e�cacy of treatments in experimen-
tal studies for which treatment assignment is random
but subject compliance is imperfect. The major di�-
culty in such studies is that treatment e�cacy is not
\identi�able", that is, it cannot be estimated from the
data, even when the number of subjects is in�nite,
unless additional knowledge is provided. Our system
combines Bayesian learning with Gibbs sampling us-
ing two inputs: (1) the investigator's prior probabili-
ties of the relative sizes of subpopulations and (2) the
observed data from the experiment. The system out-
puts a histogram depicting the posterior distribution
of the average treatment e�ect, that is, the proba-
bility that the average outcome (e.g., survival) would
attain a given level, had the treatment been taken
uniformly by the entire population. This paper de-
scribes the theoretical basis for the proposed approach
and presents experimental results on both simulated
and real data, showing agreement with the theoretical
asymptotic bounds.

Introduction

Standard clinical studies in the biological and medi-
cal sciences invariably invoke the instrument of ran-
domized control, that is, subjects are assigned at ran-
dom to various groups (or treatments or programs) and
the mean di�erences between participants in di�erent
groups are regarded as measures of the e�cacies of the
associated programs. For example, to determine if a
new drug is useful for treating some disease, subjects
will be divided (at random) into a control group and
a treatment group. The members of the control group
are given a placebo and the members of the treatment
group are given the drug in question. For each group,
the clinician records the fraction of subjects that re-
cover from the disease. By comparing these fractions
the clinician can derive a quantitative measure of ef-
fectiveness of the drug for treating the disease. In par-
ticular, if fc and ft are the fractions of subjects that
recovered from the control group and treatment group

respectively, then the di�erence E = ft� fc is an indi-
cation of the e�ectiveness of the drug.

The major source of di�culty in managing and an-
alyzing such experiments has been subject noncompli-
ance. For example, a subject in the treatment group
may experience negative side e�ects and will stop tak-
ing the drug. Alternatively, if the experiment is testing
a drug for a terminal disease, a subject suspecting that
he is in the control group may obtain the drug from
other sources. Imperfect compliance poses a problem
because simply comparing the fractions as above may
provide a misleading estimate for how e�ective the
drug would be if applied uniformly to the population.
For example, if those subjects who refused to take the
drug are precisely those who would have responded ad-
versely, the experiment might conclude that the drug
is more e�ective than it actually is. It can be shown,
in fact, that treatment e�ectiveness in such studies is
non-identi�able. That is, in the absence of additional
modeling assumptions, treatment e�ectiveness cannot
be estimated from the data without bias, even as the
number of subjects in the experiment approaches in-
�nity, and even when a record is available of the action
and response of each subject (Pearl 1995a).

In a popular compromising approach to the prob-
lem of imperfect compliance, researchers perform an
intent-to-treat analysis, in which the control and treat-
ment group are compared without regard to whether
the treatment was actually received1. The result of
such an analysis is a measure of how well the treat-
ment assignment e�ects the disease, as opposed to the
desired measure of how well the treatment itself e�ects
the disease. Estimates based on intent-to-treat analy-
sis are valid only as long as the experimental conditions
perfectly mimic the conditions prevailing in the even-
tual usage of the treatment. In particular, the exper-
iment should mimic subjects' incentives for receiving

1This approach is currently used by the FDA to approve
new drugs.



each treatment. In situations where �eld incentives
are more compelling than experimental incentives, as
is usually the case when drugs receive the approval
of a government agency, treatment e�ectiveness may
vary signi�cantly from assignment e�ectiveness. For
example, imagine a study in which (a) the drug has
an adverse e�ect on a large segment of the population
and (b) only those members of the segment who drop
from the treatment arm recover. The intent-to-treat
analysis will attribute these cases of recovery to the
drug since they are part of the treatment arm, while
in reality these cases have recovered by avoiding the
treatment (Pearl 1995b).

Another approach to the problem is to use a correc-
tion factor based on an \instrumental variables" for-
mula (Angrist, Imbens, & Rubin 1993), according to
which the intent-to-treat measure should be divided
by the fraction of subjects who comply with the treat-
ment assigned to them. Angrist et al. (1993) have
shown that, under certain conditions, the corrected
formula is valid for the subpopulation of \responsive"
subjects, that is, subjects who would have changed
treatment status if given a di�erent assignment. Unfor-
tunately, this subpopulation cannot be identi�ed and,
more seriously, it cannot serve as a basis for policies
involving the entire population because it is instru-
ment dependent|individuals who are responsive in the
study may not remain responsive in the �eld, where
the incentives for obtaining treatment di�er from those
used in the study.

Using a graphical model with latent variables, Balke
and Pearl (1994) derive bounds, rather than point
estimates, for the treatment e�ect, while making no
assumptions about the relationship between subjects'
compliance and subjects' physical response to treat-
ment. However, the derived bounds are \asymptotic",
i.e., they ignore sampling variations by assuming that
the proportions measured in the experiment are rep-
resentative of the population as a whole, a condition
which is valid only when the number of subjects is
large. This large-sample assumption may be problem-
atic when the study includes a relatively small number
of subjects.

In this paper we describe a system that provides an
assessment of the actual treatment e�ect and is not
limited to studies with large samples. The system uses
the graphical model of Balke and Pearl (1994) to learn
the treatment e�ect using Bayesian updating combined
with Gibbs sampling. The system takes as input (1)
the investigator's prior knowledge about subject com-
pliance and response behaviors and (2) the observed
data from the experiment, and outputs the posterior
distribution of the treatment e�ect. The use of graph-

ical models and Gibbs' methods for deriving posterior
distributions in such models are both well known. The
main contribution of this paper is a description of how
these techniques can be applied to the causal analy-
sis of clinical trials, and a presentation of experimental
results of a practical system applied to various sim-
ulated and real data. The basic idea of estimating
causal e�ects using Bayesian analysis goes back to Ru-
bin (1978), and was further used by Imbens and Rubin
(1994) to estimate the correctional formula advocated
by Angrist et al. (1993). In this work, we present an as-
sessment of the average treatment e�ect using weaker
assumptions that can be conveniently encoded in an
intuitively-appealing causal model.

The paper is organized as follows. First, we intro-
duce a graphical, causal model that represents a proto-
typical clinical trial with partial compliance, and de�ne
treatment e�ect in terms of the model. Next, we de-
scribe an equivalent graphical model, using potential-
response variables (Balke & Pearl 1994), that allows
the compliance and response behavior to be repre-
sented more e�ciently. Next, we describe the general
Bayesian-learning and Gibbs-sampling methods that
were used to derive the posterior parameter densities
in the graphical model. Finally, we describe experi-
mental results obtained when our system is applied to
various simulated and real data sets. We include re-
sults obtained when the system is modi�ed to answer
counterfactual queries about speci�c individuals, e.g.,
\what if Joe (who died with no treatment) were to
have taken the treatment?"

The Graphical Model

Graphical models are convenient tools for representing
causal and statistical assumptions about variables in a
domain (Pearl 1995a). In this section, we describe the
graphical model of Figure 1, which is used to represent
a prototypical clinical trial with partial compliance.
We use Z,D and Y to denote observed binary variables
from the experiment, where Z represents the treatment
assignment, D represents the treatment received, and
Y represents the observed outcome. To facilitate the
notation, we let z, d, and y represent, respectively,
the values taken by the variables Z, D, and Y , with
the following interpretation: z 2 fz0; z1g, z1 asserts
that the treatment has been assigned (z0 its negation);
d 2 fd0; d1g, d1 asserts that the treatment has been
administered (d0 its negation); and y 2 fy0; y1g, y1
asserts a positive observed response (y0 its negation).
We use U to denote all characteristics, both observed
and unobserved, that inuence the value ofD and Y for
the subjects. The domain of U is left unspeci�ed, and
in general will combine the spaces of several random



variables, both discrete and continuous.
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Figure 1: Graphical model for a prototypical clinical
trial with partial compliance

The graph of Figure 1 represents the pair of struc-
tural equations.

d = g(z; u)

y = h(d; u) (1)

where g and h are arbitrary deterministic functions,
and U is an arbitrary, unobserved random variable, in-
dependent of Z. g represents the process of treatment
selection, while h represents the process of reacting to
the treatment.
Let �e denote the physical probability of the event

E = e, or equivalently, the fraction of subjects in
the population for which E = e. The graphical
model explicitly represents two independence assump-
tions about the joint physical probability distribution
�z;d;y;u. First, the model asserts that the treatment
assignment Z can inuence Y only through the actual
treatment D. That is, Z and Y are conditionally in-
dependent given D and U . Second, the model asserts
that Z and U are marginally independent. This second
independence is ensured through the randomization of
Z, which rules out both (1) the existence of a common
cause for both Z and U , and (2) the possibility that
U has causal inuence on Z. The two independence
assumptions together induce the following decomposi-
tion of the joint distribution:

�z;d;y;u = �z�u�djz;u�yjd;u

In addition to the independence assumptions, the
graphical model also encodes causal assumptions (e.g.,
that Z does not e�ect Y directly) which permit one to
predict how the joint probability will change in light
of exogenous local interventions (Pearl 1995a). In par-
ticular, the absence of any direct link (or any spurious
path) from Z to Y implies that �yjd;u is the same re-
gardless if d is measured in an observational study, or
dictated by some (exogenous) public policy. Conse-
quently, if we wish to predict the distribution of Y ,

under the new condition where the treatment D = d is
applied uniformly to the population, we should calcu-
late Eu[�yjd;u], where Eu denotes the expectation with
respect to �u. Likewise, if we are interested in the
average change in Y due to treatment, we use the av-
erage causal e�ect, denoted ACE(D ! Y ) , as de�ned
by Holland (1988):

ACE(D ! Y ) = Eu[�y1jd1;u � �y1jd0;u] (2)

Let D denote the observed collection of triples
fz; d; yg, one for each subject, that we obtain from the
experiment. Given D, the objective of our system is to
derive the posterior Bayesian probability distribution
p(ACE(D ! Y ) jD). Although our system can be used
to estimate the individual expectations Eu[�y1jd;u], we
concentrate on estimating the average causal e�ect be-
cause historically this has been the quantity of interest
in clinical studies.

The Potential-Response Model

The graphical model presented in the previous section
is attractive for representing the assumptions that un-
derlie a given experimental design, but may not be
convenient for computation. For example, the graph
of Figure 1 represents explicitly the assumptions that
Z is randomized and that Z does not a�ect Y di-
rectly, while making no assumption about the relation-
ship between compliance and the way subjects would
respond to the treatment. However, leaving the do-
main of the unobserved variable U unspeci�ed makes
it di�cult to derive the distribution of interest, namely,
p(ACE(D ! Y ) jD).

As is done by Balke and Pearl (1994) and Hecker-
man and Shachter (1994), we exploit the observation
of Pearl (1994) that U can always be replaced by a sin-
gle discrete and �nite variable such that the resulting
model is equivalent with respect to all observations and
manipulations of Z, D, and Y . In particular, because
Z, D, and Y are all binary variables, the state space of
U divides into 16 equivalence classes: each equivalence
class dictates two functional mappings; one from Z to
D, and the other fromD to Y . To describe these equiv-
alence classes, it is convenient to regard each of them as
a point in the joint space of two four-valued variables
C and R. The variable C determines the compliance



behavior of a subject through the mapping:

d = FD(z; c) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

d0 if c = c0

d0 if c = c1 and z = z0
d1 if c = c1 and z = z1

d1 if c = c2 and z = z0
d0 if c = c2 and z = z1

d1 if c = c3

(3)

Imbens and Rubin (1994) call a subject with compli-
ance behavior c0, c1, c2 and c3, respectively, a never-

taker, a complier, a de�er and an always-taker. Simi-
larly, the variable R determines the response behavior
of a subject through the mapping:

y = FY (d; r) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

y0 if r = r0

y0 if r = r1 and d = d0
y1 if r = r1 and d = d1

y1 if r = r2 and d = d0
y0 if r = r2 and d = d1

y1 if r = r3
(4)

Following Heckerman and Shachter (1995), we call the
response behavior r0, r1, r2 and r3, respectively, never-
recover, helped, hurt and always-recover.
Let CR denote the variable whose state space is the

cross-product of the states of C and R. We use crij,
with 0 � i; j � 3 to denote the state ofCR correspond-
ing to compliance behavior ci and response behavior rj.
Figure 2 shows the graphical model that results from
replacing U from Figure 1 by the 16-state variable CR.
A state-minimal variable like CR is called a response

variable by Balke and Pearl (1994) and amapping vari-

able by Heckerman and Shachter (1995), and its states
correspond to the potential response vectors in Rubin's
model (Rubin 1978).
Applying the de�nition of ACE(D ! Y ) given in

Equation 2, it follows that using the model of Figure
2 we have:

ACE(D ! Y ) =

"X
i

�cri1

#
�

"X
i

�cri2

#
(5)

Equivalently, ACE(D ! Y ) is the di�erence between
the fraction of subjects who are helped by the treat-
ment (R = r1) and the fraction of subjects who are
hurt by the treatment (R = r2).
As usual in experimental studies, we assume that

the experimental conditions in themselves do not alter

Z

D

CR

Y

{ }CR cr

i j

ij

0 3≤ ≤,

Figure 2: Potential-response model invoking a 16 state
variable CR

the response behavior R of the subjects, and conse-
quently the conclusions we draw from the experiment
about ACE(D ! Y ) will be valid for the population
as a whole. As we noted earlier, in contrast to the
intent-to-treat analysis, we do not make the assump-
tion that the compliance behavior of the subjects in
the experiment will be the same as the compliance be-
havior in the population once the drug in question has
been approved.

Learning the Causal E�ect

Given the observed data D from the experiment, as
well as a prior distribution over the unknown fractions
�CR, our system uses the potential-response model de-
�ned in the previous section to derive the posterior
distribution for ACE(D ! Y ) . In this section, we de-
scribe how this computation can be done. To simplify
discussion, we introduce the following notation. As-
sume there are m subjects in the experiment. We use
zi, di and yi to denote the observed value of Z, D
and Y , respectively, for subject i. Similarly, we use cri

to denote the (unobserved) compliance and response
behavior for subject i.
The posterior distribution of the causal e�ect can

be derived using the graphical model shown in Figure
3, which explicitly represents the independences that
hold in the joint (Bayesian) probability distribution
de�ned over the variables fD; �CR;ACE(D ! Y ) g .
The model can be understood as m realizations of
the potential-response model, one for each triple in
D, connected together using a node that represents
the unknown fractions �CR. The model explicitly
represents the assumption that, given the fractions
�CR, the probability of a subject belonging to any of
the compliance-response subpopulations does not de-
pend on the compliance and response behavior of the
other subjects in the experiment. From Equation 5,
ACE(D ! Y ) can be computed directly from �CR, and
consequently ACE(D ! Y ) is independent of all other
variables in the domain once these fractions are known.
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Figure 3: Model used to represent the independences
in p(fDg [ f�CRg [ fACE(D ! Y ) g)

Determining the posterior probability for a node us-
ing a graphical model is known as performing infer-

ence in that model. In many cases, the independences
of the model can be exploited to make the process of
inference e�cient. Unfortunately, because the cri are
never observed, deriving the posterior distribution for
ACE(D ! Y ) is not tractable even with the given in-
dependences. To obtain the posterior distribution, our
system applies an approximation technique known as
Gibbs sampling, which we describe in the following sec-
tion.

Gibbs Sampling

Gibbs sampling is a well-known Markov chain sam-
pling method that can be used to approximate the
expected value of a function. The method can eas-
ily be applied to approximate the posterior density of
ACE(D ! Y ) by exploiting the independences in the
model from Figure 3.
Suppose we are interested in the expected value of

some function f(X) with respect to the distribution
p(XjY ):

EXjY [f ] =

Z
X

f(X)p(XjY )dX

In many cases, it may not be easy to solve the above
integral analytically. However, we can approximate
EXjY [f ] by repeatedly sampling values for X from the
distribution p(XjY ), and then taking an average. As-
suming that N samples are taken and lettingXi denote
the value for X on the ith sample we have:

EXjY [f ] �
1

N

NX
i=1

f(Xi) (6)

In practice, sampling points directly from p(XjY ) may
be di�cult. The Gibbs sampling method draws points
from the distribution by repeatedly sampling from the
conditional distributions p(XijX n Xi; Y ), which are

often very easy to derive in closed from. After ini-
tially instantiating all the values of X, the algorithm
repeatedly uninstantiates a single component Xi, and
re-samples that component according to the condi-
tional distribution p(XijX nXi; Y ). It can be shown
that as the number of iterations of the Gibbs sampler
grows large, the sampled values for X are distributed
as p(XjY )2.
We can use a Gibbs sampler to approximate the

posterior distribution of ACE(D ! Y ) as follows. Let
fa;b(�CR) denote the indicator function that is 1 if
a � ACE(D ! Y ) � b and 0 otherwise. Then we
have:

p(a � ACE(D ! Y ) � bjD)

= E�CRjD[fa;b(�CR)]

=

Z
fa;b(�CR) � p(�CRjD) � d�CR

After expanding the integral to include the unobserved
compliance and response behavior for each of the sub-
jects we have:

p(a � ACE(D ! Y ) � bjD)

=

Z
fa;b(�CR) � p(�CR; cr

1; : : : ; crmjD)

�d�CR � dcr
1 � : : : � dcrm

Thus we can use the approximation of Equation 6 in
conjunction with the Gibbs sampler to estimate the
probability that ACE(D ! Y ) falls within any inter-
val [a; b]. The conditional distributions from which
we sample are easily derived in light of the indepen-
dences depicted in Figure 3. In particular, letting
X = f�CR; cr

1; : : : ; crmg, we have:

p(crijX n cri;D) = � � p(di; yijzi; cri) � �cri

where � is the normalization constant. p(di; yijzi; cri)
is either one or zero, depending on whether the ob-
served values of zi, di and yi agree with the given
compliance and response behavior. Note that we have
used the fact that if the fractions �CR are known, then
the probability of cri is simply �cri .
To update �CR we sample from the posterior distri-

bution:

p(�CRjX n �CR;D) = �

3Y
i=0

3Y
j=0

�crij
Ncrij � p(�CR)

where � is the normalization constant and Ncrij is the
number of times crij occurs in X.

2The resulting Markov chain must be ergodic for this
result to hold, a property that can be easily established for
our application.



One choice of the functional form for p(�CR) is par-
ticularly convenient for our application. In partic-
ular, if the prior p(�CR) is a Dirichlet distribution,
then both e�ciently computing the posterior distri-
bution in closed form and sampling from that distri-
bution are easy. Assuming that the prior distribu-
tion for �CR is Dirichlet implies there exists exponents
N 0
cr00

; : : : ; N 0
cr33

such that

p(�CR) = 

3Y
i=0

3Y
j=0

�crij
N 0

crij
�1

where  is the normalization constant. Let N 0
CR =P3

i=0

P3

j=0N
0
crij

. Having the given Dirichlet prior can
be thought of as at some point being ignorant about
the fractions �CR, and then observing the compliance
and response behavior of N 0

CR subjects, N 0
crij

of which
have behavior crij. Using this simplifying assumption,
we update �CR by sampling from the following Dirich-
let distribution:

p(�CRjcr
1; : : : ; crn) = �

3Y
i=0

3Y
j=0

�crij
Ncrij

+N 0

crij
�1

For accurate results, the Gibbs sampler is typically
run in two distinct phases. In the �rst phase, enough
samples are drawn until it is reasonable to assume that
the resulting Markov chain has converged to the cor-
rect distribution. These initial samples are commonly
referred to as the burn-in samples, and the correspond-
ing values of the function being estimated are ignored.
In the second phase, the values of the function are
recorded and are used in the approximation of Equa-
tion 6. There are countless techniques for determining
when a series has converged, and no single method has
become universally accepted among researchers. An-
other complication of the Gibbs sampler is that suc-
cessive samples in the second phase are inherently de-
pendent, yet we use these samples to approximate in-
dependent samples from the distribution. As a conse-
quence of the many di�erent methods to address these
problems, tuning a Gibbs sampler for the best results
tends to be more of an art than a science.
The approach we took for the results presented in

the next section can be explained as follows. We ran
the Gibbs sampler for enough iterations to ensure a
relatively smooth estimate of the distribution, always
discarding a large number of the initial points sam-
pled. We then repeated the same schedule, starting
with a di�erent random seed, and compared the re-
sulting outputs. If the distributions were reasonably
distinct, we repeated the process using more samples.
We emphasize that the any one of the many methods

of data analysis can readily be applied to the output
of our system.

Experimental Results

We have applied the Gibbs sampling algorithm to the
model of Figure 3 for various real and simulated data
sets. Our system takes as input (1) the observed data
D, expressed as the number of cases observed for each
of the 8 possible instantiations of fz; d; yg, and (2) a
Dirichlet prior over the unknown fractions �CR, ex-
pressed as the 16 exponents N 0

CR. The system outputs
the posterior distribution of ACE(D ! Y ) , expressed
is a histogram.

To investigate the e�ect of the prior distribution on
the output, we ran all experiments using two di�erent
priors as input. The �rst is a at (uniform) distribu-
tion over the 16-vector �CR, and is commonly used to
express ignorance about the domain. The second prior
is skewed to represent a dependency between the com-
pliance and response behavior of the subjects. Figure
4 shows the distribution of ACE(D ! Y ) induced by
these two prior distributions. Note that the skewed
prior of Figure 4b assigns almost all the weight to neg-
ative values of ACE(D ! Y ) .

(a) (b)

-1 1 -1 0 10

Figure 4:
(a) The prior distribution of ACE(D ! Y ) induced by
at priors over the parameters �CR, and (b) the dis-
tribution for ACE(D ! Y ) induced by skewed priors
over the parameters.

In the following sections, we present the output of
our system using (1) a simulated data set for which
the causal e�ect is identi�able, (2) a real data set
from an experiment designed to determine the e�ect
of cholestyramine on reduced cholesterol level, and (3)
a real data set from a study to determine the e�ect of
vitamin A supplementation on childhood mortality.

Simulated Data Example: Identi�able
Causal E�ect

As we noted in the introduction, Balke and
Pearl (1994) have derived the tightest bounds for
ACE(D ! Y ) under the large-sample assumption.
They show that for some distributions of Z, D and
Y , the resulting upper and lower bounds collapse to



Table 1: Population fractions resulting in an identi�-
able ACE(D ! Y )

z d y �z;d;y
0 0 0 0.275
0 0 1 0.0
0 1 0 0.225
0 1 1 0.0
1 0 0 0.225
1 0 1 0.0
1 1 0 0.0
1 1 1 0.275

a single point. We say that ACE(D ! Y ) is identi-

�able in this case. In this section, we show the out-
put of our system when run on data sets derived from
a distribution for which ACE(D ! Y ) is identi�able.
One such distribution is shown in Table 1, yielding
ACE(D ! Y ) = 0:55.
Figure 5 shows the the output of our system when

applied to data sets of various sizes drawn from the dis-
tribution shown in Table 1, using both the at and the
skewed prior. As expected, as the number of cases in-
creases, the posterior distributions become increasingly
concentrated near the value 0:55. In general, because
the skewed prior for ACE(D ! Y ) is concentrated fur-
ther from 0:55 than the uniform prior, more cases are
needed before the posterior distribution converges to
the value 0:55.

0.55

(b) (c) (d)

0.55

(a) (e) (f) (g) (h)

0.55 0.55 0.55 0.55 0.55 0.55

Figure 5: Output histograms for identi�able treatment
e�ect using two priors. (a), (b), (c) and (d) show the
posteriors for ACE(D ! Y ) using the at prior and a
data set consisting of 10, 100, 1000 and 10000 subjects,
respectively. (e), (f), (g) and (h) show the posteriors
for ACE(D ! Y ) using the skewed prior with the same
respective data sets.

Real Data Example: E�ect of
Cholestyramine on Reduced Cholesterol

Consider the Lipid Research Clinics Coronary Primary
Prevention data described in [Lipid, 1984]. A portion

Table 2: Observed data for the Lipid study and the
Vitamin A study

Lipid Study Vitamin A Study
z d y Observations Observations
0 0 0 158 74
0 0 1 14 11514
0 1 0 0 0
0 1 1 0 0
1 0 0 52 34
1 0 1 12 2385
1 1 0 23 12
1 1 1 78 9663

of this data consisting of 337 subjects was analyzed by
Efron and Feldman (1991) using a model that incor-
porates subject compliance as an explanatory variable;
this same data set is the focus of this section.

A population of subjects was assembled and two pre-
liminary cholesterol measurements were obtained: one
prior to a suggested low-cholesterol diet and one fol-
lowing the diet period. The initial cholesterol level was
taken as a weighted average of these two measures. The
subjects were randomized into two groups: in the �rst
group all subjects were prescribed cholestyramine (z1),
while the subjects in the other group were prescribed a
placebo (z0). During several years of treatment, each
subject's cholesterol level was measured multiple times,
and the average of these measurements was used as
the post-treatment cholesterol level. The compliance
of each subject was determined by tracking the quan-
tity of prescribed dosage consumed.

We transformed the (continuous) data from the
Lipid study to the binary variables D and Y using the
same method as Balke and Pearl (1994). The resulting
data set is shown in Table 2. Using the large-sample
assumption, Balke and Pearl (1994) use the given data
to derive the bounds 0:39 � ACE(D ! Y ) � 0:78.
In Figure 6 we show the posterior densities for

ACE(D ! Y ) given the data. The density of Figure
6a corresponds to at priors (over the parameters) and
the density of Figure 6b corresponds to skewed priors.
Rather remarkable, even with only 337 cases in the
data, both posterior distributions are highly concen-
trated within the large-sample bounds.

Real Data Example: E�ect of Vitamin A
Supplements on Child Mortality

In this section, we consider an experiment described by
Sommer et al. (1986) designed to determine the im-
pact of vitamin A supplementation on childhood mor-
tality. In the study, 450 villages in northern Sumatra



(a) (b)

0.39 0.78-1 0 1 -1 0 10.39 0.78

Figure 6: Output histograms for the Lipid data. (a)
Using at priors and (b) using skewed priors.

were randomly assigned to participate in a vitamin A
supplementation scheme or serve as a control group for
one year. Children in the treatment group received two
large doses of vitamin A (d1), while those in the con-
trol group received no treatment (d0). After the year
had expired, the number of deaths y0 were counted for
both groups. The results of the study are shown in
Table 2.
Under the large-sample assumption, the method of

Balke and Pearl (1994) yields the bounds: �0:19 �
ACE(D ! Y ) � 0:01. Figure 7 shows posterior den-
sities for ACE(D ! Y ) given the data. The density of
Figure 7a corresponds to at priors over the parame-
ters and the density of Figure 7b corresponds to skewed
priors over the parameters.

(a) (b)

-1 1 -1 10-0.19 0-0.19

Figure 7: Output histograms for the Vitamin A Sup-
plementation data. (a) Using at priors and (b) using
skewed priors.

It is interesting to note that for this study, the choice
of the prior distribution has a signi�cant e�ect on the
posterior. This suggests that the clinician should per-
form a careful assessment of the prior.

A Counterfactual Query

In addition to assessing the average treatment e�ect,
the system is also capable (with only minor modi�ca-
tion) of answering a variety of counterfactual queries
concerning individuals with speci�c characteristics. In

this section, we show the result of our system when
modi�ed to answer the following query: What is the
probability that Joe would have had an improved
cholesterol reading had he taken cholestyramine, given
that (1) Joe was in the control group of the Lipid study,
(2) Joe took the placebo as prescribed, and (3) Joe's
cholesterol level did not improve.
We can answer the above query by running

the Gibbs' sampler on a model identical to that
shown in Figure 3, except that the function
ACE(D ! Y ) (Equation 5) is replaced by another
function of �CR that represents our query. If Joe was
in the control group and took the placebo, that means
that he is either a complier or a never-taker. Fur-
thermore, because Joe's cholesterol level did not im-
prove, Joe's response behavior is either never-recover
or helped. Consequently, Joe must be a member of one
of the following four compliance-response populations:
fcr01; cr02; cr11; cr12g. Joe would have improved had
he taken cholestyramine if his response behavior is ei-
ther helped (r1) or always-recover (r3). It follows that
the query of interest is captured by the function

f(�CR) =
�cr01 + �cr11

�cr01 + �cr02 + �cr11 + �cr12

Figure 8a and Figure 8b show the prior distribu-
tion over f(�CR) that follows from the at prior and
the skewed prior, respectively. Note that whereas the
skewed prior induces a prior over ACE(D ! Y ) that
is concentrated on negative values, this same prior
suggests that Joe would have bene�ted from receiv-
ing the drug. This result is an artifact of the skewed
prior that we used in our experiments: the prior im-
plies that we believe a large fraction of the popula-
tion has the response behavior hurt; Joe, however,
has response behavior helped or never� recover. Fig-
ure 8c and Figure 8d show the posterior distribution
p(f(�CRjD)) obtained by our system when run on the
Lipid data, using the at prior and the skewed prior,
respectively. From the bounds of Balke and Pearl
(1994), it follows that under the large-sample assump-
tion, 0:51 � f(�CRjD) � 0:86.
Thus, despite 39% non-compliance in the treatment

group, and despite having just 337 subjects, the study
strongly supports the conclusion that, given Joe's spe-
ci�c history, he would have been better o� taking the
drug. Moreover, the conclusion holds for both priors.

Conclusion

This paper identi�es and demonstrates a new appli-
cation area for network-based inference techniques {
the management of causal analysis in clinical exper-
imentation. These techniques, which were originally
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Figure 8: Prior (a, b) and posterior (c,d) distributions
for a subpopulation f(�CRjD) speci�ed by the counter-
factual query \Would Joe have improved had he taken
the drug, given that he did not improve without it".
(a) corresponds to the at prior, (b) to the skewed
prior.

developed for medical diagnosis, are shown capable of
circumventing one of the major problems in clinical
experiments { the assessment of treatment e�cacy in
the face of imperfect compliance. While standard di-
agnosis involves purely probabilistic inference in fully
speci�ed networks, causal analysis involves partially
speci�ed networks in which the links are given causal
interpretation and where the domain of some variables
are unknown.
The system presented in this paper provides the clin-

ical research community, we believe for the �rst time,
an assumption-free3, unbiased assessment of the aver-
age treatment e�ect. We o�er this system as a practical
tool to be used whenever full compliance cannot be en-
forced and, more broadly, whenever the data available
is insu�cient for answering the queries of interest to
the clinical investigator.
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