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ABSTRACT
We study principled methods for incorporating user util-
ity into the selection of sponsored search ads. We describe
variations of the GSP allocation/pricing mechanism that ac-
commodate these user utility functions, we provide interest-
ing and useful parallels of some of the theoretical properties
from the traditional GSP mechanisms in the new GSP vari-
ations, and we present simulation results that exemplify the
use of the ranking system.
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1. INTRODUCTION
The most popular search engines currently rank and price

ads using a generalized second price (GSP) auction, which
works as follows. Advertisers place per-click bids on search
keywords that are relevant to their ads. Each time a search
user types in a query, all the advertisers that have matching
bids are sorted using a ranking function, and the top adver-
tisers have their ads shown along with the “organic” results
returned by the search engine. An advertiser is charged
only if the search user clicks on his ad, and the amount he
is charged is the minimum bid needed to retain his position
in the sort.
In most analyses of the GSP auction, the ranking function

is assumed to be either (1) the unaltered per-click bids or
(2) the “per impression” bids obtained by multiplying each
per-click bid by the click-through rate (CTR) of the corre-
sponding ad. Method (2) is sometimes referred to as ranking
“by revenue”. We refer to GSP auctions using these ranking
functions as GSPB and GSPR, respectively.
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GSPB andGSPR may be appropriate for extracting short-
term revenue from the advertisers, but by not representing
the value of the ads to the user of the search engine, they
are missing a potentially important component needed for
long-term revenue: search traffic volume. Several existing
search-engine companies claim to be using a ranking func-
tion that includes a quality measure for keeping out low-
quality ads, but the specifics of what these measures are
and how they are used is not disclosed. In this paper, we
study principled methods for handling ad quality by defin-
ing a ranking function that makes explicit trade-offs between
user utility and short-term revenue. In Section 2, we define a
user-utility model. In Section 3, we define a publisher-utility
model that combines user utility with short-term revenue.
In Section 4, we describe mechanisms based on GSP that
use the publisher-utility model. Finally, in Section 5, we
provide simulation results.

2. MODELING USER EXPERIENCE
In this section, we describe models for search-user utility

as a function of the interactions that the user has with the
ads that are shown. Due to space constraints, we limit our
discussion to models that are additive over these interac-
tions; that is, the utility for the interactions on a set of ads
Ω is simply the sum of the utility for the interaction on each
individual ad σ ∈ Ω.
For a given ad σ, we assume there are four mutually ex-

clusive and collectively exhaustive interactions I(σ) that the
user can have: is is the event that the user looks at (“scans”)
σ but does not click, icg is the event that the user clicks σ,
and finds the resulting page relevant (“clicks good”), icb is
the event that the user clicks σ and does not find the re-
sulting page relevant (“clicks bad”), and iig is the event that
the user does not look at σ (“ignored”). For simplicity, we
assume that a user must look at an ad before clicking, and
that the user has exactly one interaction with each ad.
We use U(i) to denote the user utility function over in-

teraction events. We assume that the maximum value u
for U(i) occurs when i = icg and that the minimum value
u occurs when i = icb. Without loss of generality, we as-
sume u − u = 1. Furthermore, we assume that U(iig) = 0;
as a result of these assumptions, the function has two free
parameters (U(is) and either U(icb) or U(icg)).
In Section 5, we show experiments using three specific

utility functions. In the first, which we name UER for “util-
ity equals relevance”, we set U(is) = U(icb) = 0; the result
is that the expected utility of an advertisement is simply the
product of its click-through rate and the probability of rele-
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vance. In our second utility function we use U(is) = −0.05
and U(icb) = −0.4) (and consequently U(icg = 0.6); we
call this model LC for “low cost” due to the fact that the
cost of clicking an irrelevant ad is smaller than the gain
from clicking a relevant ad. Our third utility function has
U(is) = −0.05 and U(icb) = −0.5; we call this model EQ
for “equal” because the cost of clicking an irrelevant ad is
equal to the gain from clicking a relevant ad.

3. PUBLISHER UTILITY MODEL
Search users currently do not participate in any monetary

transfer with the search engine, and therefore it is up to the
publisher to incorporate user utility into the search mech-
anism through the choice of which ads are shown. In this
section, we show how to construct a publisher ranking func-
tion that makes an appropriate tradeoff between user utility
and revenue.

3.1 Publisher Value of User Utility
Let v(u, r) denote the publisher’s value, in dollars, of pro-

viding utility u to the user and receiving short-term revenue
r. We assume a multi-linear form for v(u, r) that accommo-
dates the following indifference constraint:

v(u, r) = v(u, (1− tm)r − ta). (1)

That is, the publisher is willing to spare a fraction tm of
the revenue and an additional ta dollars from the remainder
in order to increase user utility from the minimum u to the
maximum u. By specifying a non-zero tm, the publisher
indicates that he values the user experience in high stake
searches more than the experience in searching for a cheap
item. On the other hand, if the publisher is always willing
to spare a constant small amount ta in order to improve a
user’s utility, then for low-revenue auctions he can improve
user utility dramatically with low cost.
A simple multi-linear form that satisfies (1), given that

u− u = 1, is

v(u, r) = tau+ tm(u− u)r + (1− tm)r. (2)

This form is consistent with assuming that the publisher’s
preferences exhibit mutual utility independence of u and r
[5]. In our experiments, we consider publisher utility func-
tions of the form of (2).

3.2 Probabilistic Model
A utility maximizing publisher will rank sets of ads by

expected (publisher) utility given a particular query. In this
section, we define the probability distribution (over the in-
teraction events) that allows us to compute this expectation.
We first assume that the interaction events for a set of

ads are mutually independent, and thus the joint probabil-
ity for all events decomposes into a product of probabilities
Pσk,k(·) that are specific to each ad σk and corresponding
position k1. Our independence assumption is violated if the
probability of the user clicking on one ad depends on the
quality and/or quantity of other ads he clicked. More accu-
rate models can be estimated from data; for the purpose of
this work, however, we keep the independence assumption
for simplicity.

1Note that Pσk,k(·) will certainly depend on the given query
q; we leave this dependence implicit to simplify notation.

User-interaction events decompose into up to three sub-
events: the user looks at the ad or not, the user clicks on the
ad or not, and a clicked ad is relevant or not. As common
in the sponsored-search-auction literature [3, 7, 2, 6], we as-
sume that the click probability αjσ of an ad σ in position j
is the product of an ad effect πσ, and a positional effect βj ,
so that αjσ = πσβ

j . Both the positional effect βj and the
ad-specific factor πσ are computed based on data2. In our
model we interpret the positional effect as the probability
that the user looks at the ad. To complete our probabilistic
model, we need the probability ρσ that the landing page of
an ad is relevant to the query given that the ad was clicked.
In our experiments, we used the following algorithm to com-
pute ρσ: we computed a similarity score between the text of
the ad-destination page and the text of the organic search-
result summaries shown in the results page, and converted
this score to a probability using a calibration model con-
structed from human-labeled data.
Putting these pieces together, we have Pσ,j(is) = βj · (1−

πσ) (the user looked at the ad but did not click), Pσ,j(icg) =
βj ·πσ ·ρσ (the user looked at the ad, clicked, and the landing
page was relevant), Pσ,j(icb) = βj · πσ · (1 − ρσ) (the user
looked, clicked, and the landing page was not relevant), and
Pσ,j(iig) = 1− βj (the user did not look at the ad).

3.3 Publisher Ranking Function
We now compute the expected publisher utility for a set

of ads by combining the models from the previous two sub-
sections. In place of the short-term revenue r that results
from a click, we use the advertiser bid b. Because under
GSP the price is the lowest bid needed to retain the given
position, it follows that this modification of the publisher
utility function will rank ads in the same order as if we had
used the true price. Furthermore, we can use a reserve price
to guarantee that prices are such that we only show positive-
utility ads, and it follows that using the bid b is equivalent to
using the price in terms of deciding what ads to show. The
advantage we gain is that the expected value for a set of ads
decomposes into the sum of per-position expectations.
Given an advertisement σ with bid bσ in position j, we

compute the publisher’s expected utility ve(σ, bσ, j) by sum-
ming over the interaction events:

ve(σ, bσ, j) =
∑
i

Pσ,j(i)v(U(i), r(i, bσ))

where r(i, bσ) = bσ if i is a click event (icg or icb) and zero
otherwise. We now expand each of the utility terms in the
sum above using the publisher-utility model from (2). When
i = icg, the publisher utility is

vcg = taU(icg) + [tm(U(icg)− u) + (1− tm)] · bσ,

and similarly when i = icb, the publisher utility is

vcb = taU(icb) + [tm(U(icb)− u) + (1− tm)] · bσ.

When i = is, the publisher utility is taU(is) (there is no
short-term revenue), and when i = iig the user utility and
the revenue are both zero and thus the publisher utility is
zero. Combining with our probability model, and using the
2We can estimate the positional effect by observing click
rates of the same ad shown in different positions. In the
model we used in our experiments, we used a shared posi-
tional model for every query.
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definitions vcg and vcb above, we have:

ve(σ, bσ, j) = βj(1−πσ)taU(is)+βjπσ(ρσvcg +(1−ρσ)vcb).
(3)

A utility-maximizing publisher will allocate ads so as to
maximize the sum of (3) over all positions. Without loss of
generality, assume that the positional effects βj are mono-
tonically decreasing with j (i.e., the click rate of a particular
ad will be higher if it is placed higher in the list). We can
achieve the utility-maximizing allocation by using a position
independent ranking function µ(σ, bσ) to greedily assign ads
to positions, starting from j = 1 and continuing until all
slots are filled or until the best unassigned ad has a negative
value. In particular, we define

µ(σ, bσ) =
ve(σ, bσ, j)

βj
=

(1− πσ)taU(is) + πσ(ρσv
e
cg + (1− ρσ)vecb). (4)

The equivalence of ranking by (3) and by (4) follows from the
fact that the total expected utility

∑
j v

e(σ, bσ, j) for a set of
ads is the dot product of the vector of µ(·) values for each po-
sition and the corresponding vector of positional effects. In
particular, because the positional effects are monotonically
decreasing with j, the total expected utility is maximized by
placing ads with highest value of µ(·) in the positions with
the highest positional effects.

4. SPONSORED SEARCH MECHANISMS
In the previous section, we derived a position-independent

ranking function that allows publishers to incorporate user
utility into the selection of ads. Importantly, the ranking
function from (4) can be expressed as:

µ(σ, bσ) = fσ + gσ · bσ. (5)

That is, by expanding the definitions of vecg and vecb and
grouping terms as appropriate, the ranking function can be
expressed as a linear function of the bid value. In this sec-
tion, we study properties of the GSP mechanism when using
any ranking function of the form of (5). Note that this class
of ranking function includes as special cases the two common
ranking functions described in Section 1.
We now provide a formal definition of GSP. Let Φ denote

the candidate ads for a particular query. We denote the cor-
responding set of bids by BΦ = {bσ | σ ∈ Φ}. Let µ(σ, bσ) be
an arbitrary position-independent publisher ranking func-
tion. We denote the sorted series resulting from applying
µ(·) on BΦ by Ωµ, and its j’th element by Ωµ(j).

Definition 1. GSPµ is an allocation and pricing scheme
that allocates slot j to σ = Ωµ(j), for all j ≤ M for which
µ(σ, bσ) ≥ m. The price paid by σ is pjσ such that

µ(σ, pjσ) = max{µ(φ, bφ),m}, (6)

where φ = Ωµ(j + 1) and m is the reserve price.

That is, GSPµ ranks by µ(·) and charges a bidder the min-
imum price required to remain in his position. We denote
the set of slots allocated by µ(·) by Ω̃µ; note that Ω̃µ is Ωµ
truncated to the number of slots actually allocated. When
µ represents expected publisher utility, a natural choice for
m here is zero, ensuring that an ad is displayed only if it is
rational to do so.

When µ(·) is of the linear form of (5), we use GSPL to
denote the corresponding mechanism. Based on (6), the
price assigned by GSPL to the slot j won by σ is

pσ =
fψ − fσ + gψbψ

gσ
, (7)

where ψ = Ωµ(j + 1).3

Properties of GSP have been analyzed in previous litera-
ture [6, 3, 7, 2]. We mainly follow the settings and defini-
tions of Varian [7], which analyzes GSPB but also considers
the Google variation, in which µ(σ, bσ) = qσbσ for some un-
known quality factor qσ.4 GSPL is different from this varia-
tion of GSP due to the additive element that is included in
the ranking formula.
We denote the valuation–the amount by which a bidder

truely values a click—for the advertiser of σ by hσ. In all
of the following discussion, we ignore the case in which the
price is determined by m. Further, s and t each refer either
to a position in Ω̃µ or to a losing position (i.e., a position
j > |Ω̃µ| for which βj = 0). We use ΩB in place of Ωµ to
denote the result of ranking by GSPB .

Definition 2 ([7]). Let σ = ΩB(s). A set of bids is a
Nash Equilibrium (NE) in GSPB if it satisfies

αsσ(hσ − pσ) ≥ αtσ(hσ − pψ)∀t 6= s, (8)

where for t < s, ψ = ΩB(t), and for t > s, ψ = ΩB(t+ 1).

In words, the advertiser for each ad σ is making more total
return in his current position than he would by adjusting his
bid to move to another position. The asymmetric conditions
under (8) reflect the fact that in order for σ to be moved
to a higher ranked position t, the bid needs to exceed that
of the current holder of position t, whereas to move to a
lower ranked position t, the bid need only beat the bid of
the current holder of t+ 1.
We now adapt Definition 2 to the more general linear

ranking function of (5). To emphasize the ranking func-
tion in our notation, we use L(σ, bσ) in place of µ(σ, bσ) and
we use ΩL in place of Ω. The main change to the definition
results from the fact that the per-click prices depend on the
advertiser.

Definition 3. Let σ = ΩL(s). A set of bids is a Nash
Equilibrium (NE) in GSPL if it satisfies

αsσ(hσ −
fφ − fσ + gφbφ

gσ
) ≥ αtσ(hσ −

fψ − fσ + gψbψ
gσ

)∀t,

where φ = ΩL(s+ 1) and for t < s, ψ = ΩL(t+ 1), and for
t > s, ψ = ΩL(t).

Varian [7] also introduces symmetric Nash equilibrium in
which ψ in Definition 2 refers to ΩB(t+ 1) regardless of the
relative values of s and t. This more restrictive equilibrium
has the advantage that it leads to a tractable computation
of equilibrium bids. Generalizing the definition to GSPL
yields:

Definition 4. Let σ = ΩL(s). A set of bids is a Sym-
metric Nash Equilibrium (SNE) in GSPL if it satisfies

αsσ(hσ −
fφ − fσ + gφbφ

gσ
) ≥ αtσ(hσ −

fψ − fσ + gψbψ
gσ

)∀t,

3More accurately, the max over the term above and m.
4Recently, Yahoo! has started using an unknown quality
factor as well.
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where φ = ΩL(s+ 1) and ψ = ΩL(t+ 1).

The following observation, which is similar to the one used
by Varian in discussing the Google variation of GSP, shows
that through the ranking function L(·) there is a simple one-
to-one mapping between equilibria in GSPL and GSPB .

Proposition 1. Let BΦ = {bσ | σ ∈ Φ} be a bids pro-
file, and let B̂Φ = {L(σ, bσ) | σ ∈ Φ}. Further, let HΦ =
{hσ | σ ∈ Φ} be the valuations of the advertisers, and
ĤΦ = {L(σ, hσ) | σ ∈ Φ}. Then: (1) BΦ is NE in GSPL
with valuations HΦ if and only if B̂Φ is NE in GSPB with
valuations ĤΦ. (2) BΦ is SNE in GSPL with valuations HΦ

if and only if B̂Φ is SNE in GSPB with valuations ĤΦ.

This mapping allows us to easily adapt results about equi-
librium points in GSPB to results about equilibrium points
in GSPL. Using this technique, and given known results on
GSPB in SNE [7], we establish that GSPL not only opti-
mizes publishers utility with respect to bids, but also with
respect to true valuations:

Proposition 2. Let BΦ be SNE bids in GSPL with valu-
ations HΦ. Then, out of all rankings over Φ, ΩL maximizes
the following term:

|ΩL|∑
j=1

(fΩL(j) + gΩL(j)hΩL(j))β
j (9)

When L(·) is defined using publisher utility as in (4), we see
that the optimized term is precisely the total expected pub-
lisher’s utility, with the true value hσ in place of the bid bσ.
Intuitively, Proposition 2 shows that in equilibrium GSPL
“does the right thing” with respect to publisher utility. More
precisely, following Lahaie [6], we call a ranking that would
have been selected if we knew the true bidders’ valuations
a standard allocation, and this result shows that in SNE,
GSPL selects a standard allocation.

5. SIMULATION RESULTS
We performed simulation experiments, using real advertis-

ers’ bids submitted to Microsoft Live Search, for an arbitrary
set of 470 queries, and a total of 2557 bids. We retrieved up
to 8 bids per query, and limited the number of ads shown to
6. We measured the ratio of total expected revenue of the
ads (as sum of prices multiplied by CTR) to relevance. The
publisher makes an explicit choice of the utility model and
the tradeoff between user utility and bids; the results, how-
ever, are measured directly in terms of relevance and actual
prices. This ratio cannot capture the subtleties of the user
experience as we model it, but it helps the publisher find
the right tradeoff in terms of the values of ta and tm.
We defined the relevance score to be the relevance prob-

ability minus 0.5, so that ads more likely to be irrelevant
have a negative effect on the score. We aggregated ad rele-
vance across positions using the information retrieval notion
of discounted cumulative gain [4]. In all of our simulations,
we tested the ratio obtained by varying ta from 0 to 99 cents.

Figure 1 shows the results of using the utility LC with
three choices of tm (0, 0.4, 0.8), in comparison with EQ and
UER (with tm = 0.4). We omit the series of EQ which is
slightly above UER. The choices for ta and tm should not
be made independently: for small values of ta, a smaller tm

Figure 1: Revenue vs. relevance

achieves higher relevance for the same amount of revenue
loss, but for larger values of ta, a larger tm is better.
The simple model UER is clearly dominated by LC, and

also by EQ. This is due to the fact that UER never assigns
negative utility, and therefore always shows all available ads.
LC does not show some of the less relevant ads, resulting in
a better score and ratio despite the revenue loss from the
dropped ads.
Further, we note the steep slope on the right end of each

line, which corresponds to ta varying from 0 to 30−40 cents.
This shows how using the additive factor allows significant
gains in relevance for small amounts of revenue loss, verify-
ing our expectations based on the discussion in Section 3.

6. CONCLUSIONS
The revenue model of sponsored search relies on user clicks,

which in turn depend on whether or not the ads provide pos-
itive utility to the user. Thus to maintain search traffic and
ad-revenue for the long-term, it is important to address the
user’s experience in the ad selection mechanism as we have
done in this paper.
In a related work, Athey and Ellison [1] compute the equi-

librium of a game that includes the consumers as well as the
advertisers, and model the rational choice made by the con-
sumers whether to click or not based on the probability that
the ad will meet the consumer’s need and the cost of click-
ing on a useless ad. Our work is different in many ways,
most notably because we model relevance as an external,
measurable term, employed to improve the ranking.
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