
Using Temporal Data for Making Recommendations

Andrew Zimdars, David Maxwell Chickering, Christopher Meek

Abstract

We treat collaborative �ltering as a univari-
ate time series problem: given a user's previ-
ous votes, predict the next vote. We describe
two families of methods for transforming data
to encode time order in ways amenable to
o�-the-shelf classi�cation and density estima-
tion tools. Using a decision-tree learning tool
and two real-world data sets, we compare the
results of these approaches to the results of
collaborative �ltering without ordering infor-
mation. The improvements in both predic-
tive accuracy and in recommendation quality
that we realize advocate the use of predictive
algorithms exploiting the temporal order of
data.

Keywords: Dependency networks, probabilistic deci-
sion trees, languagemodels, collaborative �ltering, rec-
ommendation systems.

1 Introduction

The collaborative �ltering problem arose in response
to the availability of large volumes of information to
a variety of users. Such information delivery mecha-
nisms as Usenet and online catalogs have created large
stores of data, and it has become the users' task to dis-
cover the most relevant items in those stores. Rather
than requiring that users manually sift through the
full space of available items, trusting that authors
respect the available system of topics, CF tools rec-
ommend items of immediate or future interest based
on all users' expressed preferences (\votes"), suggest-
ing those items of interest to other users with similar
tastes. These votes may be either explicit, as in re-
sponse to a direct inquiry, or implicit, as by the choice
to follow one hyperlink instead of others.

In general, algorithms for the CF task, such as those

explored by Breese, Heckerman and Kadie (1998),
have not relied on the order in which users express
their preferences. Vector-space methods draw heav-
ily on work in the information retrieval literature (see,
e.g., Baeza-Yates and Ribeiro-Neto, 1999), where in-
dividual documents are treated as a \bag of words".
Likewise, probabilistic techniques (e.g. Hofmann and
Puzicha, 1999 and Heckerman, Chickering, Meek,
Rounthwaite and Kadie, 2000) have computed proba-
bility distributions over recommendations conditioned
on the entire vote history without regard to time or-
der. In the CF literature, a \bag of votes" (i.e. atem-
poral) assumption prevails, and the collaborative �l-
tering problem is cast as classi�cation (with classes
\relevant" and \irrelevant") or density estimation (of
the probability that a document is relevant, given a
user's votes).

We instead consider collaborative �ltering as a univari-
ate time series prediction problem, and represent the
time order of a user's votes explicitly when learning a
recommendation model. Further, we encode time or-
der by transforming the data in such a way that stan-
dard atemporal learning algorithms can be applied di-
rectly to the problem. Other authors (cf. Mozer, 1993)
have applied atemporal learning techniques to tempo-
ral data; we describe here two successful generic tech-
niques. As a result, researchers can simply transform
their data as we describe and apply existing tools, in-
stead of having to re-implement various collaborative
�ltering algorithms for awareness of vote order. Our
approach allows CF models to encode changes in a
user's preferences over time. It also allows models to
represent (indirectly) structure built into the feature
space that would be lost in a bag of votes representa-
tion. For example, Web page viewing histories ordered
by page request can express the link structure of a Web
site because a user is most likely to follow links from
his current page. Similarly, television viewing histories
encode the weekly schedule of shows: a viewer cannot
hop from Bu�y the Vampire Slayer to Dawson's Creek
if the two are not contemporaneous.



For simplicity, we assume for the remainder of this
paper that user preferences are expressed as implicit
votes (see, e.g., Breese et al., 1998). That is, a users'
vote history is a list of items that the user preferred,
as opposed to an explicit ranking of the items. In a
movie domain, for example, this means that a user's
vote history is simply a list of movies that he watched,
and we assume that he preferred those movies to the
ones he did not watch. We note, however, that the
transformations we describe are easily generalized to
explicit voting.

In Section 2, we present two methods for transform-
ing user vote histories that encode time-order infor-
mation in ways that traditional atemporal modeling
algorithms can use. In Section 3, we discuss three
candidate models that can be learned from standard
algorithms applied to the transformed data. In Sec-
tion 4, we describe the data sets and criteria by which
we will compare our approaches, and in Section 5 we
present our experimental results from using decision-
tree learning algorithms.

2 Data Transformations

In this section, we describe two methods that trans-
form time-ordered vote histories into a representation
that traditional atemporal modeling algorithms can
use; we call this representation the case representation.
In the case representation, the data D consists of a set
of cases (or records) fC1; : : : ; Cmg, where each case
Ci = fx1; : : : ; xng consists of a value for zero or more
of the variables in the domain X = fX1; : : : ; Xng.

The important (sometimes implicit) assumption of
modeling algorithms that use the case representation
is that the observed cases are independent and identi-
cally distributed (iid) from some joint probability dis-
tribution p(X1; : : : ; Xn)

1; an equivalent Bayesian as-
sumption is that the cases are in�nitely exchangeable,
meaning that any permutation of a set of cases has
the same probability. The learning algorithms use the
observed case values in D to identify various models
of the generative distribution.

As an example, consider the problem of predicting
whether or not a particular person will watch some
television show based on that person's age and gen-
der. Using the case representation, we might assume
that all people are drawn from some joint probability
distribution p(S;A;G), where S is a binary variable
that indicates whether or not a person watches the
show, A is a continuous variable denoting a person's

1In fact, if we are interested in learning a conditional
model for Y � X, we often need only assume that the
values for the variables in Y are independent samples from
some p(YjX nY)

age, and G is a binary variable that denotes the per-
son's gender. Under the iid assumption a learning al-
gorithm can use observed values of S, A, and G for
other people in the population to estimate the distri-
bution p(SjA;G), then make a prediction about the
particular person of interest with that distribution.

In the following sections, we describe how data that
contains vote histories can be transformed, using var-
ious assumptions, into the case representation so that
standard machine-learning algorithms can be used to
predict the next vote in a sequence. First, we need
some notation.

We use item to denote an entity for which users ex-
press preferences by voting, and we use 
 to denote
the total number of such items. For example, in a
movie-recommendation scenario, 
 is the total num-
ber of movies considered by the collaborative-�ltering
system. For simplicity we refer to each item by a one-
based integer index. That is, the items in the system
are mapped to the indices:

f1; : : : ; 
g

We use Vi to denote the ith vote history (i.e. user's
votes). In particular, Vi is an ordered list of votes:

fV 1
i ; : : : ; V

Ni

i g

where V j
i denotes the item index of the jth vote in the

list, and Ni is the total number of votes made by user
i.

As an example, suppose there are four movies The Ma-

trix, Star Wars, A Fish Called Wanda and Pulp Fic-

tion having indices 1,2,3 and 4, respectively. Suppose
there are two movie watchers in the domain: User 1
watched The Matrix and then watched Pulp Fiction,
and user 2 watched Star Wars, then watched Pulp Fic-
tion, and then watched The Matrix. Then we would
have V1 = f1; 4g and V2 = f2; 4; 1g.

For each of the transformations below, we show how
to convert from a set of vote histories into (1) a set of
domain variables X = fX1; : : : ; Xng, and (2) a set of
cases fC1; : : : ; Cmg, where each case Ci contains a set
of values fx1; : : : ; xng for the variables in X. We also
describe what assumptions are made in the original
domain in order for the resulting cases to be iid.

2.1 The \Bag-of-votes" Transformation

The �rst transformation we consider disregards the or-
der of previous votes, corresponding to the assumption
that vote order does not help predict the next vote. As
noted above, this \bag-of-votes" approach is the ap-
proach taken by many collaborative-�ltering learning
algorithms.



For each item k, where 1 � k � 
, there is a binary
variable Xj 2 X, whose states x1j and x0j correspond
to preferred and not preferred, respectively. There are
no other variables in X. For each vote history Vi, we
create a single case Ci with the following values: if
item j occurs at least once anywhere in the sequence
Vi, then the value xj in Ci is equal to x

1
j . Otherwise,

the value of xj in Ci is equal to x
0
j .

The assumption that the cases are iid corresponds to
assuming that the (unordered) votes of all vote histo-
ries (i.e. users) are all drawn from the same distribu-
tion. Under this assumption, we can use an atemporal
learning algorithm with the cases from previous vote
histories learn a model for p(Xj jXnXj) for allXj 2 X,
and then use these models to predict the next vote2

for any vote history.

2.2 The Binning Transformation

The second transformation we consider can be help-
ful when user preferences change over time. Although
the transformation does not explicitly use the order
of the votes, it can exploit temporal structure. The
idea is to (1) separate vote histories into bins by their
size, (2) transform the histories from each bin into
the case representation using the \bag-of-votes" trans-
formation described above, and (3) learn a separate
model from the data in each such bin. When it comes
time to predict the next vote in a sequence of size k,
we use the model that was learned on the cases derived
from the vote histories in the bin corresponding to k.

Suppose, for example, that we would like to train one
or more models in order to recommend movies to peo-
ple. It might be reasonable to assume that the op-
timal model for predicting the third movie for some-
one may not be a very good model for predicting the
100th movie. With binning, we divide up the range of
the number of movies that have previously been seen
into separate bins, and learn a recommendation model
for each. Thus, we might end up with three mod-
els: (1) a simple model that predicts popular movies
for people who do not go to the movies much, (2) a
model that perhaps identi�es general viewing prefer-
ences (e.g. comedies) for the typical viewer, and (3) a
model that identi�es subtle preference trends for heavy
movie watchers.

In order to perform binning, there are a number of
parameters that need to be set. First, we need to
decide how many bins to use. Second, we need to
decide, for each bin, what history lengths should be
included in that bin.

2There are some subtleties, addressed below, about how
this prediction is made.

For the experiments that we present in Section 4, we
tried both two and four bins. For each bin, we set a
minimum and maximum value for the length of the
contained histories. We chose this minimum and max-
imum such that the total number of votes in each bin
are roughly the same.

As described above, the binning approach assigns each
vote history to exactly one bin. An alternative ap-
proach, which we call the pre�x approach, is to allow
a single vote history to contribute to multiple bins by
adding an appropriate pre�x to all of the \previous"
bins. As an example, suppose there are three bins that
accommodate histories of length up to 5, 10, and 100.
In the pre�x approach, a vote history of length 90 will
have (1) the �rst �ve votes added to the �rst bin, (2)
the �rst ten votes added to the second bin, and (3) the
whole history added to the third bin.

The choice of whether or not to use the pre�x approach
to binning will depend on user behavior and domain
structure. We identify the following two hypotheses
that can help determine which method is most appro-
priate.

� The \expert/novice" hypothesis: Users with long
vote histories (\experts" in the domain) have fun-
damentally di�erent preferences than users with
short vote histories (\novices"). As a result, we
expect that omitting pre�xes of longer vote histo-
ries from bins for shorter vote histories will result
in better predictive accuracy than the pre�x ap-
proach. The expert/novice hypothesis might hold
when predicting preferences for television viewing,
where couch potatoes might have di�erent view-
ing habits than occasional viewers. On aWeb site,
heavy users tend to navigate very di�erently than
\shallow browsers" (cf. Huberman et al., 1998).

� The \everyone learns" hypothesis: Users with
long vote histories once expressed similar prefer-
ences to users with short vote histories. Under
this hypothesis, we expect that pre�xes of long
vote histories will be distributed similarly to short
vote histories, and therefore their inclusion in the
corresponding bins will provide useful data for the
model-building algorithm; as a result, we hope
that the resulting models will be more accurate.
One can also interpret this hypothesis from the
perspective of domain structure constraining user
behavior. For users of a Web portal, initial votes
may be restricted to the home page and top-level
categories linked from that page. For subsequent
page hits, available links may constrain possible
user votes. In this domain, we would expect users
to have similarly-distributed vote pre�xes because
site structure does not allow much room for inno-



vation.

For the domains we consider in Section 4, the latter hy-
pothesis seems more appropriate; although we ideally
should have compared the two, in the interest of time
we only used the pre�x approach in our experiments.
We chose the bin boundaries so that the total number
of votes of the original (i.e. non-pre�x) histories in
each bin were roughly the same.

Whether or not we use the pre�x approach, the addi-
tional computational overhead of binning over no bin-
ning is proportional to a constant factor (the number
of bins), because each bin will contain no more votes,
and no more vote histories, than would a single model
computed using the entire vote set.

Structural aspects of some prediction domains can
make diÆcult the choice of vote sub-histories to aug-
ment data for binning. Web sites tend to have a hierar-
chical structure with a home page at the root, but the
same cannot be said for television programming sched-
ules, which re
ect periodic structure. When predicting
television viewing habits given a \snapshot" of user
viewing histories, pre�xes may not re
ect the periodic
nature of the program schedule. In such domains, dif-
ferent choices of contiguous vote sub-histories may be
appropriate, but the resulting profusion of data might
render binning impractical.

We should point out that binning can be applied to
collaborative �ltering problems in which the temporal
order of the votes is unknown. Although the pre�x ap-
proach may not be appropriate, binning based on the
number of votes can potentially lead to signi�cantly
better accuracy in atemporal domains. Consider, for
example, the problem of recommending items in a gro-
cery store based on the products bought (the recom-
mendation may appear as a targeted coupon on a re-
ceipt). It might turn out that, regardless of the order
in which people put groceries in their shopping cart,
the number of items in their cart may indicate very
di�erent shopping behavior; consequently the binning
approach might yield signi�cantly better models than
a system that ignores the number of votes.

2.3 Data Expansion

The �nal data transformation we consider, which we
call data expansion, �nds inspiration in the language
modeling literature (see, e.g., Chen and Goodman,
1996). This method of data expansion distinguishes
the most recent n votes from the entire vote history, as
well as identifying the order of the most recent votes.
All of the variables that we create in the transforma-
tion are binary, and have states x1 and x0 correspond
to preferred and not preferred, respectively.

In the case representation, we create one binary vari-
able for each of the 
 items in the domain: XT =
fXT

1 ; : : : ; X
T

 g. The \T" superscript in XT

k is meant
to indicate that this is a \target variable" that repre-
sents whether or not the next vote is for item k.

The data expansion transformation is parameterized
by a history length l; this parameter, which corre-
sponds to the \n" parameter in an n-gram language
model, determines how far back in the vote history
to look when predicting the next vote. For each in-
teger history 1 � j � l, we again create one bi-
nary variable for each of the 
 items in the domain:
fX�j1 ; : : : ; X�j
 g. The \�j" superscript in X

�j
k is

meant to indicate that this variable represents whether
or not jth previous vote (from the one we're predicting)
is for item k. We useXL to denote the set of all lagged
variables (e.g. fX�11 ; : : : ; X�1
 g; fX�21 ; : : : ; X�2
 g).

There is a �nal set of 
 variables consisting of, for
each item, an indicator of whether or not that item
was voted for at least once previously in the given vote
history. We use XC = fXC

1 ; : : : ; X
C

 g to denote these

variables. In language-modeling parlance, these vari-
ables are known as cache variables.

In contrast to the \bag-of-words" approach, where
each vote history was transformed into a single case, in
the data expansion transformation, each vote in every
history gets a corresponding case. In particular, for
vote V j

i , which is the jth vote in the ith vote history,
we de�ne the values for all of the variables as follows.
For simplicity, let v = V

j
i . We set the value of target

variable XT
v to x1, and we set the value of all other

target variables to x0. For each history variable X�jk ,
where 1 � j � l, we set the corresponding value to ei-
ther x1 if the jth previous vote in history i has value k,
or x0 otherwise. Finally, we set the value of each cache
variable XC

k to either x1 if item k occurs as a vote (at

least once) previous to V j
i in Vi, or x0 otherwise.

We should point out that in order to feasibly learn
a model using the cases that result from the data-
expansion transformation, the learning algorithm(s)
need to use a sparse representation for the cases. See
(e.g.) Chickering and Heckerman (1999) for a discus-
sion.

Consider our movie example again. For simplicity, we
use M , S, F , and P to label all variables we create
corresponding to movie items The Matrix, Star Wars,
A Fish Called Wanda and Pulp Fiction. Furthermore,
we use 1 and 0 to denote the values preferred and not

preferred, respectively.

Suppose we want to transform a vote history con-
taining The Matrix, Pulp Fiction, and Star Wars, in
that order, into the case representation with a history



length of one. First we de�ne the variables

X = f MT ; ST ; F T ; P T ;

M�1; S�1; F�1; P�1;

MC ; SC ; FC ; PCg

Next, we consider each vote in the history, and create
a case for each one. Table 1 shows the case values that
result.

The learning algorithm we use should build a model
for each of the target variables, using all non-target
variables as predictor variables. That is, we would
like the model to estimate, for each target variable
XT
j 2 XT, the distribution p(XT

j jX
L;XC).

The iid assumption in the case representation|after
performing the data-expansion transformation with
history-length l|implies that each vote is drawn from
a distribution that depends on (1) the values of the
previous l votes and (2) the presence or absence of at
least one vote for previous items.

3 Models

In this section, we describe some well-known models
that can be used for collaborative �ltering applica-
tions; when learned from data that is transformed as
described in the previous section, these models can
exploit the vote order to improve recommendation ac-
curacy.

3.1 Memory-based algorithms

Memory-based collaborative �ltering algorithms pre-
dict the votes of the active user based on some partial
information about the active user and a set of weights
calculated from the user database. Memory-based al-
gorithms do not provide the probability that the active
user will vote for a particular item. Instead, the active
user's predicted vote an item is a weighted sum of the
votes of the other users. See Breese et. al (1998) for a
more detailed discussion.

3.2 Cluster models

A standard probabilistic model is the na��ve Bayes
model with a hidden root node|one where the prob-
abilities of votes are conditionally independent given
membership in an unobserved class variable C, where
C ranges over a fairly small set of discrete values. This
corresponds to the intuition that users may be clus-
tered into certain groups expressing common prefer-
ences and tastes. The joint probability distribution

for this model is expressed as follows:

P (C = c;v1; : : : ;vn) = P (C = c)

nY

i=1

P (vi j C = c)

(1)
The parameters of this model can be learned using
the EM algorithm (see Dempster, Laird and Rubin,
1977). Cheeseman and Stutz (1995) provide details of
a speci�c implementation of the learning algorithm.

In this setting, prediction for collaborative �ltering
follows from the density estimation problem, as the
model predict the item(s) most likely to receive an af-
�rmative vote given the user's vote history.

Other latent class models (Hofmann and Puzicha,
1999) have been proposed for collaborative �ltering
which place user and item on an equal footing. These
permit construction of a two-sided clustering model
with preference values, but they depend on multino-
mial sampling of (user; item) pairs, and as such do not
generalize naturally to new users.

3.3 Decision-tree models

The approach that has proven most e�ective in pre-
vious work (cf. Heckerman et al., 2000) constructs
a forest of probabilistic decision trees, one for each
item in the database, using a Bayesian scoring crite-
rion (Chickering, Heckerman, and Meek, 1997). This
provides a compact encoding of conditional probabil-
ities of recommendations, given previous votes.3 We
use this approach in Section 4 to evaluate our data
transformations.

3.4 Alternative models

The data expansion technique discussed in Section 2.3
suggests the application of language-modeling algo-
rithms to collaborative �ltering. We have conducted
limited experiments with variants of n-gram language
models, and the results are promising (although we do
not present them here).

Hidden Markov models (HMMs) also recommend
themselves in this setting, but in our experience they
are ill-suited to a na��ve representation of the data,
where each possible vote corresponds to exactly one
feature. This re
ects in part the number of parame-
ters that must be estimated when running EM for an
HMM: if the model admits c hidden states, then there
are mc+ c2 + c parameters to estimate for the poste-
rior probabilities of states, the state transitions, and

3It also permits the construction of a family of graphical
models known as dependency networks, which have expres-
sive strength similar to Markov networks.



Table 1: Case values created for the movie example with the data expansion method.

Vote MT ST F T P T M�1 S�1 F�1 P�1 MC SC FC PC

The Matrix 1 0 0 0 0 0 0 0 0 0 0 0
Pulp Fiction 0 0 0 1 1 0 0 0 1 0 0 0
Star Wars 0 0 1 0 0 0 0 1 1 0 0 1

the state priors. Moreover, models are slow to con-
verge because collaborative �ltering data tend to be
very sparse, in that few users vote on any one item. As
a result, evidence for estimating a particular variable
is rarely presented in training. This sparsity is integral
to the collaborative �ltering problem, but lethal to ac-
curate estimation. Finally, HMMs discard much of a
user's history in making predictions, and our experi-
ments indicate that a long history can be informative.

4 Experiments

In this section, we describe the experiments we per-
formed to demonstrate that using vote order can im-
prove the accuracy of models.

We conducted our experiments using two real-world
data sets, both of which are Web user traces. In each,
the notion of \user" corresponds to a server session,
and a page request was interpreted as an aÆrmative
vote.

The �rst data set consists of session traces from
http://research.microsoft.com/. The training
data encompassed 110587 page requests from 27595
users over three days in late August 1999, and the test
data included 54843 requests from 13563 users on 14
September of the same year. The requests span a to-
tal of 8420 URLs, roughly 400 of which correspond to
404 errors for invalid URLs. The average length of a
session trace was 4.007 votes, with a median length of
2, and the longest trace was 93 votes.

The second data set uses session
traces from http://www.msnbc.com/, corresponding
to an 80%/20% split of users on 22 December 1998.
The training data include roughly 1:28 million requests
from 475769 users, while the test data include 178158
requests from 87714 users. The requests in these two
data sets span 1001 URLs; it is unclear whether any of
these represent invalid URLS. The average length of a
session trace was 2.696 vote, with a median length of
2 and a longest trace of 407 votes.

Unfortunately, we did not identify other publicly-
available data that records user preferences in time or-
der. The authors' experience with other data suggests
that the techniques outlined here may prove fruitful
with other types of sequential data.

We used probabilistic decision-tree models for our ex-
periments, and compared both binning and data ex-
pansion to the default \bag-of-votes" approach of ig-
noring the data order. For all of the experiments,
we learned a single decision tree per page to predict
whether the user requests that page, based on the
transformed data available at that time. We used a
greedy tree-growing algorithm in conjunction with the
Bayesian score described by Chickering et. al (1997).
In particular, the score evaluated the posterior model
probability using a 
at parameter prior, and a model
prior of the form �f , where f is the number of free
parameters in the tree. We used � = 0:01 for all of the
experiments.

In all of the data transformations described in the pre-
vious section, we created a separate binary variable for
each item that denoted whether or not the next vote
will be for that item. De�ning the variables this way
can be problematic for any learning algorithm using
�nite data that does not enforce the constraint that
the next vote will be for exactly one item. In particu-
lar, the algorithm we used to learn a forest of decision
trees did not enforce this constraint. We solved this
problem by using the decision trees to calculate the
posterior probability that each item would be the next
vote, then renormalizing.

We applied two evaluation criteria in our experiments.
For all prediction algorithms, we adopted the \CF ac-
curacy" score outlined by Heckerman et al. (2000),
and specialized it to compute the CF score with re-
spect to the next item in the user's history only. The
CF accuracy score attempts to measure the probabil-
ity that a user will view a recommendation presented
in a ranked list with other recommendations. To ap-
proximate this probability, let p(k) = 2�k=� denote
the probability that the user views the kth item on
his list (where k counts from 0). For the experiments
presented here, we chose a half-life of � = 10. We
computed for each user i, and for each vote vij in his
vote history, a ranked list of recommendations given
vi1; : : : ; vi(j�1).

One may compute the CF accuracy of a general list L
of test items spanning n users. Suppose the model rec-
ommends Ri items to each user, and the users actually
prefer sets of Mi items. Let Æik denote the indicator



that user i prefers the kth recommendation. Then

accuracyCF(L) =
1

n

nX

i=1

PRi�1
k=0 Æikp(k)PMi�1
k=0 p(k)

(2)

Let kij be the ranking assigned by our model to vote
vij . Scoring one vote at a time, CF accuracy simpli�es
to

accuracyCF =
1P
iNi

nX

i=1

NiX

j=1

21=�p(kij) (3)

One may compute CF accuracy for any CF algorithm
that generates a ranked list of recommendations, but
it provides a criterion speci�c to the collaborative �l-
tering task. For the probability models we evaluated,
we also computed the mean log-probability assigned
to each of the user's actual votes, given the preced-
ing vote history. (This log-probability was normalized
over all items in dependency-network models to com-
pensate for potential inconsistencies).

Note that CF accuracy is a function of the relative

magnitude of density estimates, while the log score
depends on the absolute magnitude of the estimates.

5 Results

The results presented below correspond to three fam-
ilies of models. The \Baseline" results derive from
a forest of decision trees trained on bag-of-votes data,
shown to be a one of the best models for CF (Breese et
al., 1998). \2 Bins" and \4 Bins" experiments applied
the binning method described in section 2.2. Two or
four decision trees are constructed for each Web page,
but only one is chosen (according to the partial his-
tory at hand) to make a prediction. The \DE-" exper-
iments expand data as in section 2.3, with histories of
length 1, 3, and 5.

Figure 1 and Figure 2 show the CF scores and log
scores, respectively, for all of the models in the
MSNBC domain.

There are some interesting observations to make about
these results. First, we see that for the collaborative-
�ltering score, the score got worse as we increased the
number of bins. This may be an artifact of the sparsity
of long traces in Web sur�ng data, a phenomenon that
has been observed elsewhere (e.g., Huberman et al.,
1998). This may not impair work in other domains;
our experience with data suggests that other frequency
functions for user history length can have thicker tails.

Second, we see that all of the data-expansion models
performed signi�cantly better than the baseline with
respect to CF accuracy, but that performance did not

0.48

0.485

0.49

0.495

0.5

0.505

0.51

0.515

0.52

Baseline 2 Bins 4 Bins DE-1 DE-3 DE-5

Figure 1: Collaborative �ltering scores of the models
constructed for the MSNBC domain.

-4.915

-4.91

-4.905

-4.9

-4.895

-4.89

-4.885
Baseline 2 Bins 4 Bins DE-1 DE-3 DE-5

Figure 2: Log-probability scores of the models con-
structed for the MSNBC domain.

increase as a function of history length. This might
suggest that Web page requests depend more strongly
on immediate links than on the short-term history, and
that data expansion mainly embodies this structural
element of the Web sur�ng domain. (One should not
interpret this as a Markov assumption; in our expe-
rience, the cache variables strongly in
uence predic-
tion.) The higher CF accuracy results suggest that
the relative magnitude of density estimates is more of-
ten accurate for data-expanded models than binned
models, and these relative estimates determine which
pages show up in a recommendation list.

Our results show that unlike for the CF score, the bin-
ning approach dominated both the baseline and the
data-expansion models for log-probability predictive
accuracy. For this score, the data-expansion models
improved as the history length increased, but only the
model with the longest history (�ve) was competitive
with the baseline model. We suspect that the data
were too sparse to permit accurate parameter esti-
mates for the models learned under data expansion.
In particular, there were roughly 50 percent more pa-



rameters to train in each of the data-expansion models
than in the other models, which leads us to suspect
that the learning algorithm over-�t for these models
to some degree. In retrospect, we regret the choice of
a single value of the model-prior parameter � for all
data transformations. We expect that if we had tuned
this parameter by splitting up the training data and
maximizing a hold-out prediction accuracy, we would
have identi�ed a smaller � for the data-expansion mod-
els that yielded better results for both criteria on the
tests set. Improvements in log score as history length
increase demonstrate the value of the additional in-
formation encoded by the expanded data, which com-
pensates in part for having too few data points per
parameter.

Figure 3 and Figure 4 show the CF scores and log
scores, respectively, for all of the models in the MSR
domain.

0

0.1

0.2

0.3

0.4

0.5

0.6

Baseline 2 Bins 4 Bins DE-1 DE-3 DE-5

Figure 3: Collaborative �ltering scores of the models
constructed for the MSR domain.

MSR Log p

-5.8

-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4

-4.2

Baseline 2 Bins 4 Bins LM-1 LM-3 LM-5

Figure 4: Log-probability scores of the models con-
structed for the MSNBC domain.

We see that the results are qualitatively almost iden-
tical to the MSNBC results. In particular, the data-

expansion models are superior for the collaborative-
�ltering score, but the binning models are superior for
the log score. However, binning models do not indicate
a steep fall-o� in CF accuracy relative to the baseline,
as for the MSNBC data set. We hypothesize that typi-
cal MSR visitors leave longer page traces than MSNBC
users.

6 Conclusion

We have presented two techniques for transforming
data that allow the collaborative �ltering problem to
be treated as a time-series prediction task. Both of
these techniques allow state-of-the-art collaborative
�ltering methods to model a richer representation of
data when vote sequence information is available. We
have evaluated these techniques, using probabilistic
decision-tree models, with two data sets for which the
order of user votes were known. Results indicate mixed
gains for each approach. Binning user data by history
length improved log-probability scores with respect to
a bag-of-votes model in our test cases, while data ex-
pansion to introduce history variables improved the
collaborative �ltering accuracy score over baseline.

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto.
Modern Information Retrieval. Addison-Wesley
Publishing Co., Reading, MA, 1999.

[2] John S. Breese, David Heckerman, and Carl
Kadie. Empirical analysis of predictive algorithms
for collaborative �ltering. Technical Report MSR-
TR-98-12, Microsoft Research, Redmond, WA,
May 1998.

[3] P. Cheeseman and J. Stutz. Advances in

Knowledge Discovery and Data Mining, chapter
Bayesian Classi�cation (AutoClass): Theory and
Results, pages 153{180. AAAI Press, Menlo Park,
CA, 1995.

[4] Stanley F. Chen and Joshua Goodman. An empir-
ical study of smoothing techniques for language
modeling. In Proceedings of the 34th Annual

Meeting of the ACL, pages 310{318, June 1996.
Santa Cruz, California.

[5] D.M. Chickering and D. Heckerman. Fast learn-
ing from sparse data. In Proceedings of Fifteenth

Conference on Uncertainty in Arti�cial Intelli-

gence, Stockholm, Sweden, pages 109{115. Mor-
gan Kaufmann, 1999.

[6] D.M. Chickering, D. Heckerman, and C. Meek.
A Bayesian approach to learning Bayesian net-



works with local structure. In Proceedings of Thir-
teenth Conference on Uncertainty in Arti�cial In-

telligence, Providence, RI, pages 80{89. Morgan
Kaufmann, August 1997.

[7] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical

Society, Series B, 39:1{38, 1977.

[8] David Heckerman, David Maxwell Chickering,
Christopher Meek, Robert Rounthwaite, and Carl
Kadie. Dependency networks for inference, collab-
orative �ltering, and data visualization. Journal

of Machine Learning Research, 1:49{75, October
2000.

[9] Thomas Hofmann and Jan Puzicha. Latent class
models for collaborative �ltering. In Proceedings

of IJCAI, 1999.

[10] Bernardo A. Huberman, Peter L. T. Pirolli,
James E. Pitkow, and Rajan M. Lukose. Strong
regularities in world wide web sur�ng. Science,
280(5360):95{97, 1998.

[11] Joseph A. Konstan, Bradley N. Miller, David
Maltz, Jonathan L. Herlocker, Lee R. Gordon,
and John Riedl. GroupLens: Applying collabo-
rative �ltering to Usenet news. Communications

of the ACM, 40(3):77{87, March 1997.

[12] M. C. Mozer. Neural net architectures for tem-
poral sequences processing. In A. S. Weigend and
N. A. Gershenfeld, editors, Time series predic-

tion: Forecasting the future and understanding

the past, volume 15, pages 243{264. Addison Wes-
ley, Reading, MA, 1993.

[13] Paul Resnick, Neophytos Iacovou, Mitesh Suchak,
Peter Bergstrom, and John Riedl. GroupLens:
An open architecture for collaborative �ltering of
NetNews. In Proceedings of ACM 1994 Confer-

ence on Computer Supported Cooperative Work,
pages 175{186, Chapel Hill, NC, 1994.


