
Fast Algorithms for Finding Matchings in Lopsided
Bipartite Graphs with Applications to Display Ads

Denis Charles
Microsoft Corp.

One Microsoft Way
Redmond, WA

cdx@microsoft.com

Max Chickering
Microsoft Corp.

One Microsoft Way
Redmond, WA

max.chickering@microsoft.com

Nikhil R. Devanur
Microsoft Corp.

One Microsoft Way
Redmond, WA

nikdev@microsoft.com

Kamal Jain
Microsoft Corp.

One Microsoft Way
Redmond, WA

kamalj@microsoft.com

Manan Sanghi
Microsoft Corp.

One Microsoft Way
Redmond, WA

manansa@microsoft.com

ABSTRACT
We derive efficient algorithms for both detecting and repre-
senting matchings in lopsided bipartite graphs; such graphs
have so many nodes on one side that it is infeasible to rep-
resent them in memory or to identify matchings using stan-
dard approaches. Detecting and representing matchings in
lopsided bipartite graphs is important for allocating and de-
livering guaranteed-placement display ads, where the corre-
sponding bipartite graph of interest has nodes representing
advertisers on one side and nodes representing web-page im-
pressions on the other; real-world instances of such graphs
can have billions of impression nodes. We provide theoret-
ical guarantees for our algorithms, and in a real-world ad-
vertising application, we demonstrate the feasibility of our
detection algorithms.

Categories and Subject Descriptors
F.1.2 [Modes of Computation]: Probabilistic computa-
tion; F.2.2 [Analysis of Algorithms and Problem Com-
plexity]: Nonnumerical Algorithms and Problems; G.2.2
[Discrete Mathematics]: Graph Theory; K.4.4 [Computers
and Society]: Electronic commerce

General Terms
Algorithms,Theory

Keywords
Bipartite Matching, Selling Display Advertisements, Online
Algorithms, Linear Programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’10, June 7–11, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-60558-822-3/10/06 ...$10.00.

1. INTRODUCTION
In a popular form of online advertising, advertisers buy

display ads (i.e., graphical“banner”ads) to be shown to users
viewing online content, and the publishers of that content
are compensated a fixed amount for each web-page impres-
sion (i.e., user view of a page) for which an advertisement
is shown. This form of advertising is particularly appropri-
ate for branding campaigns where, unlike most paid-search
campaigns, the advertiser values impressions even if the user
does not click. Display ads are typically sold with guaran-
teed impression goals; the publisher (or ad network) sells a
fixed number of impressions and is responsible for making
sure that these campaign goals are met. In addition, pub-
lishers typically allow advertisers to buy display ads that
target both content type and particular attributes of the
user who is shown the impression. For example, an adver-
tiser might purchase a million impressions to be shown on
sports-related web pages, but may only want to show the
ads to users who are thought to be female1.

The assignment of an advertiser to each impression on
a publisher site can be understood as a matching problem
on a bipartite graph. In particular, let G = (A, I,E) be a
bipartite graph with two sides A and I and the edge set E.
(A for advertisers and I for impressions.) Let δ(i) denote
the set of edges incident on vertex i in graph G. Given sizes
Ba for all a ∈ A, a complete matching M ⊆ E is such that

• for all a ∈ A, |M ∩ δ(a)| ≥ Ba, and

• for all i ∈ I , |M ∩ δ(i)| = 1.

In this paper, we present matching algorithms for graphs
that are lopsided; that is, graphs for which |I | � |A| and
for which I cannot be represented explicitly. In particu-
lar, we solve two distinct matching problems: (1) the ex-
istence problem, in which we want to know whether there
exists a complete matching and (2) the representation prob-
lem, which is to succinctly represent a complete matching if
one exists. The existence problem is important to solve in
order for a publisher to decide whether or not to accept a

1Large publishers and ad networks can use both user-
provided profile information and browsing history of users
to derive thousands of targetable attributes.

121

candidate campaign from an advertiser; given a set of adver-
tiser campaigns for which there exists a complete matching,
the publisher will want to know if there remains a complete
matching after adding the new campaign. The representa-
tion problem is important to solve in order for a publisher to
implement an on-line delivery algorithm; the publisher needs
to know how to assign each impression to an advertiser, not
just whether or not such an assignment exists.

In the algorithms we present, the method by which I is
(implicitly) represented differs depending on which problem
we are solving. To solve the existence problem, we assume
that we can draw samples from I (with replacement) from
the distribution over both the targetable attributes of in-
terest and across time. The sampled impressions are not
labeled, our algorithms require only the set of neighbors in
A for each such sample. For the representation problem, we
assume that we can compute, for any set of advertiser nodes,
the number of impressions matching the targeting criteria
(which includes the time period of interest) of at least one
advertiser in that set. Although we do not go into the de-
tails of these representations, in practice we use a Bayesian-
network model for each time interval of interest to repre-
sent the joint distribution over the non-temporal attributes;
these models are estimated from data and then used both
to produce random samples for the existence problem and
to compute the “union” computations for the representation
problem.

An important property for any algorithm solving the exis-
tence problem is that the algorithm must be able to complete
quickly enough that a sales representative for a publisher can
accept or reject candidate campaigns in “real time” (for ex-
ample, while on the phone). For the representation problem,
on the other hand, the algorithm can be run periodically of-
fline (e.g., once a day).

Given our representation of I for the existence problem, it
is easy to see that one needs to generate at least |I | samples
if one wants to solve the problem exactly, and hence getting
a running time that is independent of I is impossible. Hence
we consider an approximate version of the problem, which
we call the Gap-Existence problem with gap ε, a parame-
ter. The problem is to distinguish between the following
two cases.

YES There exists a complete matching with sizes Ba, and

NO There does not exist a complete matching with sizes
Ba(1− ε),

for some given ε > 0. The gap version is still a reasonable
problem to solve for the publisher. This is because in prac-
tice a certain level of under-delivery (roughly about 5%) is
tolerated. Even if no under-delivery is tolerated, one can
consider the gap version where the YES case corresponds to
sizes Ba(1 + ε), and the NO case corresponds to the actual
sizes Ba. In this version, the publisher is fine if he misses an
advertiser that would push him close to capacity. In other
words, he is happy to accept only those advertisers who he
could still serve if he only had a 1/(1 + ε) fraction of the
actual traffic.

For the representation problem, we allow fractionalmatch-
ings: a fractional matching is given by {xai}(a,i)∈E with
xai being the fraction of edge (a, i) included in the match-
ing. A complete fractional matching is such that for all i,∑

a xai = 1 and for all a,
∑

i xai ≥ Ba. As described above,

we also assume that I is represented in such a way that for
all S ⊆ A, one can get the total number of impressions that
could be assigned to some advertiser in S, that is |Γ(S)|,
where Γ(S) is the set of neighbors of S in the graph G. The
relaxation to allow fractional matchings is justified by the
observation that one could use the fractional matching to as-
sign impressions probabilistically. A simple Chernoff bound
argument shows that this is a reasonable solution given that
the Ba’s are fairly large.

For the remainder of the paper, we use n to denote |A|.
The following two theorems summarize the main results of
our paper.

Theorem 1. There exists an algorithm that solves the

Gap-Existence problem with gap ε in time O(n log n
ε2

|I|
mina Ba

)

and using space O(n).

Our experimental results (see Section 3.1) suggest that in
practice one actually needs far fewer samples than suggested
by this bound. The running times in the experiments sug-
gest that this algorithm could indeed be of practical use.

Theorem 2. There exists a representation of a complete
(possibly fractional) matching of size O(n2) (given one ex-
ists). Such a representation can be found in time polynomial
in n, given oracle calls to answer |Γ(S)| for any S ⊆ [n].
Given such a representation and a given i ∈ I, one can
compute {xai}a:(a,i)∈E in time O(n2).

The algorithm to compute a representation uses the ellip-
soid algorithm and as a result it is not clear if it is practical.
However, one only needs to compute these representations
periodically and hence a longer running time might be toler-
ated. Given the representation however, the allocation can
be computed really fast, even in a matter of milliseconds.

Related work
Bipartite matching is a classic problem in combinatorial op-
timization that has been much studied. Matching problems
with capacities > 1 are typically formulated as max-flow
problems [3] and fairly fast and sophisticated algorithms are
known to solve such problems [5]. The key new feature of
the problems we consider is the lopsidedness of the graph.
Ahuja et al [1] give an algorithm for max flow on bipartite
graphs with (one term of) the running time depending on
the smaller side. However, all these algorithms require the
entire graph to be stored in memory (thus requiring time
and space that scaled at least linearly with the number of
edges). Such algorithms are impractical in our setting.

Several aspects of the display ad system have been studied
recently [4, 6, 8]. However, as far as we know, the existence
problem has not been studied before. A special case of our
problem is when all the Ba’s are the same. In this special
case, our algorithm for the existence problem and its analysis
appears in a paper by Motwani et al [7] as a “balls and
bins” problem (in a different context). There is a natural
generalization of this algorithm that seems to also work well.
However, the proof of Motwani et al [7] does not generalize.
In fact, it is open if this natural generalization actually solves
the existence problem. We discuss this in more detail in
Section 5.

The representation problem has been considered by Vee
et al [8] and by Devanur and Hayes [2]; our results do not
seem directly comparable to theirs.

122

2. EXISTENCE PROBLEM: ALGORITHM
Since bipartite matching is a fairly well understood prob-

lem, one could try to use some of the well known algorithms
for bipartite matching for our problem. One natural ap-
proach is to generate a sufficient number of samples from I
and solve a matching problem on the sampled graph. But
this approach is still too slow for our purposes, especially
since the resulting graph is still too large. So we propose
a streaming-like algorithm. The following is a framework
for such an algorithm, with the details of how to implement
certain steps left out.

The algorithm picks a certain number of sample impres-
sions to generate, ṁ, and a certain number of target im-
pressions, k̇a for each advertiser a. It then generates ran-
dom samples from I and assigns the impressions online (as
soon as they are generated). If after all the ṁ samples have

been generated, each advertiser a has received at least k̇a
impressions, then the algorithm outputs YES, otherwise it
outputs NO. The idea is that if there is a complete match-
ing, then the algorithm should be able to achieve the given
targets whereas if there is no near-complete matching, then
no matter what the algorithm does, it should not be able to
achieve the targets. The algorithm is complete by specifying
the choice of

1. number of samples ṁ,

2. the target k̇ (k̇ denotes the vector of ka’s) and

3. the assignment function, which given the set of neigh-
bors of an impression, and the remaining number of
samples and targets, specifies the advertiser to whom
that impression is assigned. We call such an assign-
ment function as one step of the algorithm.

Generic Streaming algorithm

• Initialize: k = k̇, m = ṁ.

• While m > 0

– Get a random i ∈ I and Γ(i).

– a := Generic-step(Γ(i),k,m).

– Update k := k − ea and m := m − 1. (ea is
the unit vector with 1 in the ath position and 0’s
elsewhere.)

• If k ≤ 0, output YES
Else output NO

We present a general class of single steps that we call
Water-level-Step. The resulting algorithms are called
Water-level algorithms. (The standard waterlevel algo-
rithm, when all Ba’s are the same, is to always assign i to
that a that has the highest remaining target.) A
Water-level-Stepstep is parameterized by a potential func-
tion, f that takes as input, a vector of targets, k, and the
number of remaining samples,m. Water-level-Stepwith
potential function f(k,m)

• Given: current k, m and Γ(i).

• Assign i to a = argmina′∈Γ(i){f(k− ea′ ,m− 1)}, that
is, assign i to that a in its neighborhood such that the
function f on the resulting target is minimized.

A Water-level algorithm is completely specified by the
choice of f, ṁ and k̇. We show that there exists a choice
of f, ṁ and k̇ that solves the gap-existence problem, but
not specify those choices right away. We will simultane-
ously give the proof of the following theorem and present
the corresponding choices, thus revealing how these choices
are dictated by the proof.

Theorem 3. For all ε, δ > 0, there is a certain choice of
f, k̇ and ṁ such that the resulting streaming algorithm with
probability2 1− δ solves the Gap-Existence problem with gap
ε.

3. EXISTENCE PROBLEM: ANALYSIS

Choice of f
For the purpose of analysis and the choice of f , we consider
a hypothetical algorithm, which we call Pure-random.
Pure-random is defined only in the YES case, and it re-
quires a complete matching M . It is a streaming algorithm
and hence we only need to specify the generic step. (We
still leave k and m unspecified.) By abuse of notation we let
M(i) denote the node in A that i is matched to in M . This
is well defined since |M ∩ δ(i)| = 1.
Pure-random-Step (with a complete matching M)

• Given: i.

• Assign i to a =M(i)

The idea is to design a Water-level-Step such that in
the YES case, the probability that the Water-level algo-
rithm achieves the given targets is at least as much as the
probability that the Pure-random algorithm achieves the
targets (for all m and k). Then, we pick the targets such
that Pure-random algorithm is guaranteed to achieve it.
Finally, the number of samples is picked in such a way that
if we are in the NO case, then any algorithm would fail to
achieve the targets. All these are probabilistic events that
happen with probability 1− δ.

In fact, we don’t actually show that the probability of
achieving the targets is higher for Water-level. Instead,
we show that a suitable bound on the failure probability
of Pure-random also holds for Water-level. This is
achieved through a “Hybrid Argument”3.
Hybrid Argument: We consider a sequence of algorithms,
H0,H1, . . . ,Hṁ, where H0 is the Pure-random algorithm,
Hṁ is the Water-level algorithm, and Ht is the algorithm
that does Water-level-Step for the first t steps and then
does Pure-random-Step for steps t+ 1 to ṁ. We also de-
fine a sequence of potential functions φ0 ≥ φ1 ≥ · · · , φṁ

where φt depends on Ht such that φṁ is equal to the fail-
ure probability of Water-level and φ0 is a Chernoff-type
bound on the failure probability of Pure-random. Ide-
ally, we would have liked φ0 to be exactly the failure prob-
ability of Pure-random, but the exact failure probabilities
do not have a succinct closed form expression (they can be
expressed as summations). Hence we have to work with

2We use δ for the failure probability, which is not to be
confused with δ(i) being the edge set incident on i. The
context should clarify the meaning.
3 The name is derived from a similar argument used in cryp-
tography which is also called a Hybrid argument.

123

bounds on the probability that we get when we prove con-
centration inequalities such as Chernoff bounds.

Consider the algorithm Ht at step t. The natural candi-
date for the Water-level-Step would be to put the ball
in that bin that minimizes the failure probability for the
rest of the algorithm, which is Pure-random. But as men-
tioned before, this failure probability is hard to work with.
Therefore the Water-level-Step instead uses a bound on
the failure probability that is nicer, and this is what f(k,m)
will be. f will also be a function of pa = Ba/|I |, that is the
probability that Pure-random-Step assigns an impression
to advertiser a, but this dependence will remain implicit. If
m = 0, then we define f(k,m) = 0 if k is the all zeroes vec-
tor, and 1 otherwise. Otherwise f = min{∑a fa(ka,m), 1}
where fa is a bound on the failure probability of the ath bin
with target ka and m remaining balls. In other words the
failure probability for the entire algorithm is obtained by
taking a union bound over the failure probabilities for each
bin. Let kt(Ht) be the random variable denoting the vector
of remaining targets after step t of algorithm Ht. We are
now ready to define the potential function φ.

φt := E first t steps of Ht [f(kt(Ht), ṁ− t)] .

Note that φ0 = f(k,m), where k is the initial target, is sim-
ply a bound on the failure probability of Pure-random, and
φm = the failure probability of Water-level, as required.

Recall that we wish to show that φ0 ≥ φ1 ≥ · · · , φṁ, or
equivalently, φt ≥ φt+1 for all t. We do this in two steps, by
showing that φt ≥ μt ≥ φt+1, where μ is defined as follows.

μt := E first t+1 steps of Ht [f(kt+1(Ht), ṁ− t− 1)] .

The easier of the two inequalities is that μt ≥ φt+1 and we
show that now. Note that Ht and Ht+1 only differ in the
t + 1st step. μt and φt+1 are the expected values of f after
t+1 steps of Ht and Ht+1 respectively. While the t+1st step
of Ht is Pure-random, that of Ht+1 is defined to minimize
f , and the resulting value is φt+1 which is therefore smaller
than μt.

The other inequality, φt ≥ μt, follows essentially from
what we call the Monotone Quality Property (MQP) of fa’s.
This property is as follows.

Definition 4. fa(k,m) is said to satisfy the MQP if

fa(k,m) ≥ pafa(k − 1, m− 1) + (1− pa)fa(k,m− 1).

If fa were the exact failure probabilities, then they would
satisfy the MQP with equality. And vice versa, if we solved
the above with equality as a recurrence, then the solution
is the exact failure probability. We now show that MQP
implies μt,a ≤ φt,a, where μt,a (and respectively φt,a) is the
ith component of μt (respectively φt):

μt,a = E first t+1 steps of Ht [fa(kt+1,a(Ht),m− t− 1)]

= E first t steps of Ht [pafa(kt,a(Ht)− 1,m− t− 1) +

(1− pa)fa(kt,a(Ht),m− t− 1)]

≤ E first t steps of Ht [fa(kt,a(Ht),m− t)] (Due to MQP)

= φt,a.

We have thus shown that it is sufficient that the functions
fa bound the failure probabilities for the ath advertiser in
Pure-random, and that they satisfy the MQP. It remains
to pick such functions. We give one such family of functions

here. Let

fa(k,m) = inf
h
{ehk(1− pa + pae

−h)m}.

Lemma 5. fa satisfies the MQP.

Proof. For all h,

pafa(k − 1, m− 1) + (1− pa)fa(k,m− 1)

≤ pae
h(k−1)(1− pa + pae

−h)m−1 +

(1− pa)e
hk(1− pa + pae

−h)m−1

= ehk(1− pa + pae
−h)m−1[pae

−h + (1− pa)]

= ehk(1− pa + pae
−h)m.

By picking h to be the one that minimizes fa(k,m), the last
quantity becomes equal to fa(k,m).

Lemma 6. fa bounds the failure probability.

Proof. The first few steps of the proof of Chernoff bounds
gives this.

Lemma 7.

fa < exp

(−(pam− k)2

2pam

)
.

Proof. This follows from the remaining steps.

The bound in Lemma 7 is the same as that obtained by
applying Chernoff bounds to bound the probability of fail-
ure of Pure-random. We now state the Chernoff bounds
(Lemma 8, the multiplicative versions) and an equivalent
form (Corollary 9) that we find more suitable.
Chernoff bounds: Let X =

∑
aXa where Xa ∈ [0, 1] are

independent random variables. Let μ = E[X].

Lemma 8. For all ε > 0,

Pr[X < μ(1− ε)] ≤ exp

(−ε2μ
2

)
,

Pr[X > μ(1 + ε)] ≤ exp

(−ε2μ
2 + ε

)
.

Corollary 9. For all δ > 0, with probability at least
1− δ, −Dl(μ, δ) ≤ X − μ ≤ Dh(μ, δ) where

Dl(μ, δ) =

√
2μ ln

(
1

δ

)
and

Dh(μ, δ) =

√
2μ ln

(
1

δ

)
+

1

2
ln

(
1

δ

)
.

Proof. Plug in ε =
√

2
μ
ln

(
1
δ

)
and ε =

√
2
μ
ln

(
1
δ

)
+

1
2μ

ln
(
1
δ

)
in the Chernoff bounds above.

Choice of Initial Targets
Suppose we are in the YES case. If we run thePure-random al-
gorithm and Xa is the random variable indicating the num-
ber of impressions assigned to advertiser a by the algorithm,
then after m steps, with probability 1− δ,

for all a,Xa ≥ ṁpa −Dl(ṁpa, δ/n). (1)

As we showed using the Hybrid argument, the same state-
ment is also true for the Water-level algorithm. Thus we
set the initial target to be k̇a = ṁpa −Dl(ṁpa, δ/n).

124

Choice of number of samples ṁ
Now how large does m have to be so that we can distinguish
between the YES and the NO cases? Suppose we are in the
NO case. Then there exists a set S ⊆ A such that |Γ(S)| <
B(S)(1−ε). Let Y (S) be the random variable indicating the
number of impressions drawn from Γ(S). Y (S) is an upper
bound on the total number of impressions allocated to the
advertisers in S, by any algorithm. Let q(S) = |Γ(S)|/|I | be
the probability that an impression is in Γ(S). Let p(S) =∑

a∈S pa =
∑

i∈S Ba/|I |. Note that in the NO case, q(S) ≤
p(S)(1− ε). Then applying the concentration inequality to
Y (S) we get that with probability ≥ 1− δ,

Y (S) ≤ ṁq(S)+D(ṁq(S), δ) ≤ ṁp(S)(1−ε)+D(ṁp(S), δ).
(2)

We pick ṁ such that Inequalities (1) and (2) cannot both
be true. A simple choice is to pick ṁ such that

D(ṁpa, δ/n) ≤ εṁpa/2 for all i, and (3)

D(ṁp(S), δ) ≤ εṁp(S)/2 for all S. (4)

In that case, Y (S) < ṁp(S)(1− ε/2) and hence there exists
an i ∈ S such that the number of impressions assigned to a
is less than mpa(1 − ε/2). On the other hand, (1) and (3)
along with the Hybrid argument imply that for all a ∈ A,
at least ṁpa(1− ε/2) impressions are assigned to it.

(3) and (4) are achieved (with probability 1−δ) by picking

ṁ =
8

mina{pa}ε2 ln

(
2n

δ

)
.

One could optimize for ṁ by making sure D(ṁpa, δ/n) ≤
ε1ṁpa and D(ṁp(S), δ) ≤ ε2ṁp(S) and ε1 + ε2 = ε. This
only saves us a constant factor, so we leave out the de-
tailed calculations here. The simple bound corresponds to
the choice of ε1 = ε2 = 1/2. In fact this choice is better
than optimizing as mentioned above, because this choice is
biased towards the YES case. That is, if we are in the YES
case, then we can detect it with fewer samples than if we
are in the NO case. This is desirable for us since we expect
to be in the YES case more often than in the NO case.

3.1 Existence Problem: Experimental Evalu-
ation

We evaluated the accuracy of our algorithm using known
NO and known YES matching instances. To create realis-
tic instances, we modified the impression goals of a real set
of advertisers booked against a set of Microsoft properties
for a particular one-month period. The algorithm to create
these instances proceeded as follows. For each instance, we
first chose a random subset S of the advertisers4 to be the
“bottleneck” set. Next, we generated impressions using our
traffic model and assigned those impressions to orders using
the following rule: if the impression was targeted by an ad-
vertiser in S, assign the impression to any advertiser in S
with the fewest assigned impressions; otherwise, assign the
impression to any advertiser (not in S) with the fewest as-
signed impressions. Let da denote the number of impressions
assigned to advertiser a using this procedure. To create a
YES instance, we simply set the impression goal Ba of each
advertiser a to be (1 − ε)da. In this case we “under-book”
the capacity of the system by the parameter ε. To create

4The size of S was one third of the total number of adver-
tisers in our experiments

a NO instance, we set the impression goal Ba of each order
a ∈ S to be da(1+ ε) for the given “overbooking” parameter
ε; for the advertisers a �∈ S, we set the impression goal Ba

to be da(1 − ε′), where ε′ was chosen so that the number
of impressions booked is equal to the number of expected
impressions5.
Using the above procedure we created 50 YES instances and
50 NO instances with ε = 0.03. The number of impressions
for these instances was about 320 × 106, and the number
of impressions targeted by the orders was in the range of
100× 106 and 200 × 106 impressions. We simulated 5 inde-
pendent trials of our algorithm for a fixed value of δ, namely
0.001, and number of samples between 25×103 and 450×103.
The number of samples were chosen such that the running
time for each instance was less than 6 seconds. In all, we
simulated 700 runs of our algorithm. It turns out that at
around 275×103 samples our algorithm exhibits a transition
in behavior. For smaller number of samples our algorithm
accepts all the YES instances, but on the NO instances it
rejects only about 17% of the cases. This indicates that for
small sample size our δ value was still too small. When the
number of samples exceeded 300 × 103 samples we did not
see any errors in the YES case or the NO case. When the
number of samples is ≈ 275 × 103, for the YES case our
algorithm made an error in 10.4% of the instances; for the
NO case our algorithm made an error in 15.2% of the cases.

4. REPRESENTATION PROBLEM
The basis for our representation is an LP for minimizing a

submodular function. The representation will be a solution
to the dual of this LP, with an appropriate choice of a sub-
modular function. In the rest of this section, we first present
an LP that minimizes a given submodular function, and its
dual (Section 4.1), and then show how with an appropri-
ate choice of a submodular function this gives us a compact
representation of a complete matching (Section 4.2)

4.1 LP to Minimize a Submodular function
Let [n] be the set {1, 2, . . . , n}. Let 2[n] be the power

set of [n], that is, the set of all subsets of [n]. Let ψ :

2[n] → R be a submodular function, that is, for all S, T ⊆ [n],
ψ(S) + ψ(T) ≥ ψ(S ∪ T) + ψ(S ∩ T). Given a permutation
π ∈ Sn, let S(π, a) = {π(1) . . . π(a)}. By extension, let
S(π, 0) = ∅. The LP that minimizes ψ is as follows.

minimize z (5)

s.t. for all π ∈ Sn,

z ≥ ψ(∅) +
n∑

a=1

xπ(a) (ψ(S(π, a))− ψ(S(π, a− 1))) ,

for all a, 0 ≤ xa ≤ 1.

Lemma 10. LP (5) captures the problem of minimizing
the submodular function ψ. That is, the optimum value of
the LP is equal to minS⊆[n]{ψ(S)} and the optimum solution
to the LP gives a set that minimizes ψ.

Proof. We first show that for any given value of xa’s,
the inequality corresponding to a permutation that orders
the xa’s non-increasingly is the most constraining inequality
of all (Lemma 11). Thus z can be set to be equal to the

5Whenever no such ε′ existed, we abandoned the instance.

125

RHS of this inequality. Further the RHS can be interpreted
as a convex combination of ψ’s by rearranging terms:

ψ(∅) +
n∑

a=1

xπ(a) (ψ(S(π, a))− ψ(S(π, a− 1))) = (6)

n∑
a=0

ψ(S(π, a))(xπ(a) − xπ(i+1)),

with xπ(0) being set to 1 and xπ(n+1) being 0. Hence z
is minimized if and only if this convex combination only
includes those sets that minimize ψ. In particular, if there is
a unique set S that minimizes ψ, then the optimum solution
is to set xa = 1 for all a ∈ S and 0 otherwise. In that case,
the RHS of (6) is just ψ(S), for any permutation that ranks
all elements in S before those not in S.

Lemma 11. Given 0 ≤ xa ≤ 1, the permutation that
ranks xa’s in a non-increasing order maximizes

n∑
a=1

xπ(a) (ψ(S(π, a))− ψ(S(π, a− 1))) .

Proof. We will just show that for all a, b ∈ [n] and S ⊆
[n] such that a, b /∈ S, xa > xb if and only if

xa (ψ(S ∪ a)− ψ(S)) + xb (ψ(S ∪ a ∪ b)− ψ(S ∪ a)) ≥
xb (ψ(S ∪ b)− ψ(S)) + xa (ψ(S ∪ a ∪ b)− ψ(S ∪ b)) .

It is easy to see that this is sufficient to prove the lemma:
for a given permutation, let a and b be consecutively ranked
elements (a is before b) such that xa < xb, and S is the
set of all elements ranked before a. The above inequality
tells us that we could swap a and b in the ranking without
decresaing the quantity we wish to maximize.

The inequality we need is the same as the following, by
rearranging terms:

xa (ψ(S ∪ a)− ψ(S)− ψ(S ∪ a ∪ b) + ψ(S ∪ b)) ≥
xb (ψ(S ∪ a)− ψ(S)− ψ(S ∪ a ∪ b) + ψ(S ∪ b)) .

The lemma now follows from the fact that ψ(S∪a)−ψ(S)−
ψ(S ∪ a ∪ b) + ψ(S ∪ b) is non-negative, which is by the
definition of submodularity of ψ.

An immediate corollary of Lemma 11 is as follows.

Corollary 12. Given an oracle access to ψ, there is a
polynomial (in n) time separation oracle for LP (5), even
though it has exponentially many constraints. Hence one
can use the ellipsoid algorithm to solve LP (5) in time poly-
nomial in n.

The dual of LP (5) is as follows. Recall that S(π, a) =
{π(1) . . . π(a)}. S(π, π−1(a)) is the set of all elements that
are ranked up to (and including) a in the permutation π.
S(π, π−1(a) − 1) is the set of all elements that are ranked
before (and not including) a in the permutation π.

maximize ψ(∅)
∑
π

βπ −
∑
a

αa (7)

s.t. for all i,

αa +
∑
π

βπ
[
ψ(S(π, π−1(a)))− ψ(S(π, π−1(a)− 1))

] ≥ 0,

∑
π

βπ ≤ 1.

αa ≥ 0, βπ ≥ 0.

Note that the βπ’s define a solution to LP (7) since each
αa occurs in exactly one constraint (in addition to the con-
straint αa ≥ 0), and hence we either set αa so that the
constraints holds with equality, or set αa = 0.

4.2 Using LP (7) to Represent a Matching
We now show that with a natural choice for ψ, the βπ’s

represent a complete matching if there exists one. In fact
more generally, for any matching M ⊆ E such that |M ∩
δ(i)| = 1 for all i ∈ I , define profit(M) :=

∑
a min{Ba, |M ∩

δ(a)|}. A complete matching is one whose profit is
∑

aBa.
Extend the above definition to fractional matchings as well:
{xai}(a,i)∈E is a fractional matching if

∑
a xai = 1 for all i ∈

I and the profit of such a matching is
∑

a min{Ba,
∑

i xai}.
Then we show that LP (7) with ψ appropriately defined finds
a maximum profit matching.

Define ψ as follows: for any S ⊆ A,

ψ(S) =
∑
a∈Sc

Ba + |Γ(S)|,

where Γ(S) is the set of neighbors of S in the given graph
G. We show the following:

1. ψ is submodular (Lemma 13).

2. The optimal value of LP (7) = minS{ψ(S)}
= maxM{profit(M)} = maximum profit of a fractional
matching (Lemma 14).

3. A solution βπ to LP (7) corresponds to a fractional
matching with profit equal to the objective function of
the LP (Lemma 15).

From the above, it follows that LP (7) finds a maximum
profit matching. In particular, if a graph has a complete
matching, then it can be represented using βπ ’s. We will
later show that one can even guarantee that there exists
a representation of small size, and it can be computed in
polynomial time.

Lemma 13. ψ is submodular.

Proof. Proof is standard. The terms corresponding to
Ba’s are “linear”. So if we let B(S) =

∑
a∈S Ba, then

B(S) +B(T) = B(S ∪ T) +B(S ∩ T), and equivalently,

B(Sc) +B(T c) = B(Sc ∪ T c) +B(Sc ∩ T c)

= B((S ∩ T)c) +B((S ∪ T)c).
It remains to show that the Γ terms are submodular. This
follows from the observations that Γ(S ∪ T) = Γ(S) ∪ Γ(T)
and Γ(S ∩ T) ⊆ Γ(S) ∩ Γ(T).

Lemma 14. The optimal value of LP (7) = minS{ψ(S)} =
maxM{profit(M)} = maximum profit of a fractional match-
ing.

Proof. Lemma 10 implies that the optimum value of LP
(7) is equal to minS{ψ(S)}. Note that ψ naturally cor-
responds to the weight of a vertex cover, namely that of
Sc∪Γ(S), with weight of a ∈ A being Ba and weight of i ∈ I
being 1. Thus minimizing ψ is equivalent to finding a mini-
mum weight vertex cover. Using standard max-flow/min-cut
technology one can show that a minimum weight of a vertex
cover is equal to the maximum profit of a matching which is
equal to the maximum profit of a fractional matching.

126

Lemma 15. A solution βπ to LP (7) corresponds to a
fractional matching with profit equal to the objective func-
tion of the LP.

Proof. We first define an integral matching Mπ given a
permutation π. Given a solution βπ to LP (7), the corre-
sponding fractional matching is

∑
π βπMπ. We also show

that at the optimum,
∑

π βπ is always equal to 1, and hence
the above is a convex combination of integral matchings.
Finally we show that the objective function for a given so-
lution is equal to the profit of the corresponding fractional
matching.

DefineMπ as follows: all impressions adjacent to π(1) are
matched to π(1). All impressions in the set Γ({π(1), π(2)})\
Γ({π(1)}) are matched to π(2), and so on, all impressions
in the set Γ(S(π, π−1(a)))\Γ(S(π, π−1(a)−1)) are assigned
to a. Equivalently, an impression i is assigned to
argmina:(a,i)∈E{π−1(a)}, the earliest ranked advertiser ad-
jacent to i.

For any feasible solution, multiplying all the βπ’s by the
same positive number maintains feasibility of all constraints
except that of

∑
π βπ ≤ 1. The objective function is also

multiplied by the same number. Thus at the optimum∑
π βπ = 1.
To relate the profit of the matching

∑
π βπMπ to the ob-

jective function ψ(∅)∑π βπ−
∑

a αa, we first reformulate the
constraints in LP (7). The constraint

∑
π βπ[ψ(S(π, π

−1(a)))−
ψ(S(π, π−1(a)− 1))] + αa ≥ 0 is equivalent to∑
π

βπ
[|Γ(S(π, π−1(a)))| − |Γ(S(π, π−1(a)− 1))|] ≥ Ba−αa.

The LHS of this constraint now corresponds to
∑

i xai where
{xai}(a,i)∈E is the fractional matching given by

∑
π βπMπ .

This is because |Γ(S(π, π−1(a)))| − |Γ(S(π, π−1(a)− 1))| =
|Mπ ∩ δ(a)|, the number of impressions allocated to a in
Mπ . Thus Ba − αa = min{Ba,

∑
i xai}. Since ψ(∅) =∑

a Ba, by setting
∑

π βπ = 1, we get that the objective
function is equal to

∑
a(Ba −αa) =

∑
a min{Ba,

∑
i xai} =

profit(
∑

π βπMπ).

This implies that one can always represent a (fractional)
maximum matching as a convex combination of Mπ’s. But
we might need a large number of Mπ’s to do so (potentially
all n! of them). However, we now show that we only need
n+ 1 of them.

Lemma 16. There exists a maximum fractional matching
that can be represented as a convex combination of at most
n + 1 Mπ’s. Moreover, such a representation can be found
in time polynomial in n.

Proof. We show that any vertex solution of LP (7) has
at most n+1 non-zero βπ ’s. LP (7) has n!+n variables, and
thus a vertex solution to this LP has n!+n tight constraints.
Suppose we wish to maximize the number of non-zero βπ’s,
then we should minimize the number of tight constraints
of the form βπ = 0. Hence we try to set as many of the
other constraints to be tight as possible. But the number of
other constraints is only 2n+ 1. Hence the number of tight
constraints of the form βπ = 0 is at least n! − n − 1 which
implies that the number of non-zero βπ’s is at most n+ 1.

We cannot use the ellipsoid algorithm directly to solve
LP (7). But we can use the following stadard technique: we

first solve LP (5) using the ellipsoid algorithm (Corollary
12) and consider the constraints that appear as separating
hyperplanes during its run. Since the ellipsoid algorithm
runs in polynomial time, there are only polynomially such
constraints. We now solve LP (7) with only those β′

πs that
correspond to these constraints (with all others being set to
0). This does not change the optimum value of LPs (5) and
(7).

A very interesting fact is that the set of optimal fractional
matchings obtained this way (as

∑
π βπMπ) does not con-

tain any integral matchings, unless there is a unique integral
matching! In fact this gives us the following corollary.

Corollary 17. If a bipartite graph has a unique perfect
matching then it is a subgraph of the “half graph”.

5. CONCLUDING REMARKS
A natural open direction that our approach suggests is to

analyze the following Waterlevel algorithm for the existence
problem: assign i to the advertiser maximizing ka/Ba. This
would be the “natural generalization” of the algorithm in
Motwani et. al. [7], that is, assign to the advertiser with
the highest ka. (They consider the case when the Ba’s are
all the same.) In fact, the proof of Motwani et. al. seems
to generalize to this case also, at first sight, but on closer
examination, it can be seen that it does not. The proof cos-
ntructs a coupling (essentially a bijective mapping) between
the random choices made by Pure-random and the ran-
dom choices made by the Waterlevel algorithm. It is shown
inductively that under this mapping, Waterlevel is always
more balanced than Pure-random. To be more precise,
for every choice that Pure-random makes, the coupling
gives a choice for Waterlevel that keeps it more balanced.
However, if the Ba’s are different, then the same impression
contributes to different fractions of Ba for different adver-
tisers and as a result the inductive step fails. In particular,
suppose that the distribution of the fractions is the same for
both algorithms, and that there are two choices for a given
impression with the same ratio ka/Ba but different Ba’s.
By breaking ties accordingly, waterlevel can be made to be
given to that advertiser with a larger Ba, thus making it
“less balanced” than PR which gives it to the one with the
smaller Ba. One can also verify that the proof of Motwani
et. al. works against a stronger “adversary”, that is even if
at every step an impression is drawn from a different graph,
as long as all graphs have a complete matching. However, if
the sizes are different, then one can show that the natural
generalization will fail against the stronger adversary. This
indicates that a different proof is needed if this algorithm
indeed works.

Also another open problem is to design a fast (possible
combinatorial) algorithm to compute a representation of a
matching as guaranteed by Lemma 16, instead of using the
ellipsoid algorithm

6. REFERENCES
[1] Ravindra K. Ahuja, James B. Orlin, Clifford Stein, and

Robert Endre Tarjan. Improved algorithms for bipartite
network flow. SIAM J. Comput., 23(5):906–933, 1994.

[2] Nikhil R. Devanur and Thomas P. Hayes. The adwords
problem: online keyword matching with budgeted
bidders under random permutations. In John Chuang,

127

Lance Fortnow, and Pearl Pu, editors, ACM Conference
on Electronic Commerce, pages 71–78. ACM, 2009.

[3] L.R. Ford and D.R. Fulkerson. Maximal flow through a
network. Canadian Journal of Mathematics, 8:399–404,
1956.

[4] Arpita Ghosh, Preston McAfee, Kishore Papineni, and
Sergei Vassilvitskii. Bidding for representative
allocations for display advertising. In WINE, pages
208–219, 2009.

[5] Andrew V. Goldberg and Satish Rao. Beyond the flow
decomposition barrier. J. ACM, 45(5):783–797, 1998.

[6] Sébastien Lahaie, David C. Parkes, and David M.
Pennock. An expressive auction design for online
display advertising. In Dieter Fox and Carla P. Gomes,
editors, AAAI, pages 108–113. AAAI Press, 2008.

[7] Rajeev Motwani, Rina Panigrahy, and Ying Xu 0002.
Fractional matching via balls-and-bins. In Josep Dı́az,
Klaus Jansen, José D. P. Rolim, and Uri Zwick, editors,
APPROX-RANDOM, volume 4110 of Lecture Notes in
Computer Science, pages 487–498. Springer, 2006.

[8] Erik Vee, Sergei Vassilvitskiiy, and Jayavel
Shanmugasundaram. Optimal online assignment with
forecasts. Technical Report 05, Yahoo! Labs, 2009.

128

