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ABSTRACT
Algorithms for learning Bayesian networks from data have two components: a scoring metric and a
search procedure. The scoring metric computes a score reecting the goodness-of-�t of the structure
to the data. The search procedure tries to identify network structures with high scores. Heckerman
et al. (1995) introduce a Bayesian metric, called the BDe metric, that computes the relative posterior
probability of a network structure given data. In this paper, we show that the search problem of
identifying a Bayesian network|among those where each node has at most K parents|that has a
relative posterior probability greater than a given constant is NP-complete, when the BDe metric
is used.

12.1 Introduction

Recently, many researchers have begun to investigate methods for learning Bayesian net-
works. Many of these approaches have the same basic components: a scoring metric and a
search procedure. The scoring metric takes a database of observed cases D and a network
structure BS, and returns a score reecting the goodness-of-�t of the data to the struc-
ture. A search procedure generates networks for evaluation by the scoring metric. These
approaches use the two components to identify a network structure or set of structures
that can be used to predict future events or infer causal relationships.
Cooper and Herskovits (1992)|herein referred to as CH|derive a Bayesian metric,

which we call the BDmetric, from a set of reasonable assumptions about learning Bayesian
networks containing only discrete variables. Heckerman et al. (1995)|herein referred to
as HGC|expand upon the work of CH to derive a new metric, which we call the BDe
metric, which has the desirable property of likelihood equivalence. Likelihood equivalence
says that the data cannot help to discriminate equivalent structures.
We now present the BD metric derived by CH. We use Bh

S to denote the hypothesis that
BS is an I-map of the distribution that generated the database.2 Given a belief-network
structure BS, we use �i to denote the parents of xi. We use ri to denote the number of
states of variable xi, and qi =

Q
xl2�i

rl to denote the number of instances of �i. We use
the integer j to index these instances. That is, we write �i = j to denote the observation
of the jth instance of the parents of xi.

1Learning from Data: AI and Statistics V. Edited by D. Fisher and H.-J. Lenz. c1996 Springer-Verlag.
2There is an alternative causal interpretation of network structures not discussed here. See HGC for

details.
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Using reasonable assumptions, CH derive the following Bayesian scoring metric:

p(D;Bh
S j�) = p(Bh

Sj�) �
nY
i=1

qiY
j=1

�(N 0
ij)

�(N 0
ij +Nij)

�
riY
k=1

�(N 0
ijk +Nijk)

�(N 0
ijk)

(12:1)

where � is used to summerize all background information, Nijk is the number of cases in
D where xi = k and �i = j, Nij =

Pri
k=1Nijk, N 0

ij =
Pri

k=1N
0
ijk, and �(�) is the Gamma

function. The parameters N 0
ijk characterize our prior knowledge of the domain. We call

this expression or any expression proportional to it the BD (Bayesian Dirichlet) metric.
HGC derive a special case of the BDmetric that follows from likelihood equivalence. The

resulting metric is the BD metric with the prior parameters constrained by the relation

N 0
ijk = N 0 � p(xi = k;�i = jjBh

SC
; �) (12:2)

where N 0 is the user's equivalent sample size for the domain, and Bh
SC

is the hypothesis
corresponding to the complete network structure. HGC note that the probabilities in
Equation 12.2 may be computed from a prior network: a Bayesian network encoding the
probability of the �rst case to be seen.
HGC discuss situations when a restricted version of the BDe metric should be used.

They argue that in these cases, the metric should have the property of prior equivalence,
which states that p(Bh

S1j�) = p(Bh
S2j�) whenever BS1 and BS2 are equivalent.

HGC show that the search problem of �nding the l network structures with the high-
est score among those structure where each node has at most one parent is polynomial
whenever a decomposable metric is used. In this paper, we examine the general case of
search, as described in the following decision problem:

K-LEARN

INSTANCE: Set of variables U , database D = fC1; : : : ; Cmg, where each Ci is an instance
of all variables in U , scoring metric M(D;BS) and real value p.
QUESTION: Does there exist a network structure BS de�ned over the variables in U ,
where each node in BS has at most K parents, such that M(D;BS ) � p?

H�o�gen (1993) shows that a similar problem for PAC learning is NP-complete. His results
can be translated easily to show that K-LEARN is NP-complete for k > 1 when the BD
metric is used. In this paper, we show that K-LEARN is NP-complete, even when we use
the BDe metric and the constraint of prior equivalence.

12.2 K-LEARN is NP-Complete

In this section, we show that K-LEARN is NP-complete, even when we use the likelihood-
equivalent BDe metric and the constraint of prior equivalence.
The inputs to K-LEARN are (1) a set of variables U , (2) a database D, (3) the relative

prior probabilities of all network structures where each node has no more than K parents,
(4) parameters N 0

ijk and N 0
ij for some node{parent pairs and some values of i, j, and k,

and (5) a value p.
The input need only include enough parameters N 0

ijk and N 0
ij so that the metric score

can be computed for all network structures where each node has no more than K parents.
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Consequently, we do not need the N 0
ijk and N 0

ij parameters for nodes having more than
K parents, nodes with parent con�gurations that always have zero prior probabilities,
and values of i, j, and k for which there is no corresponding data in the database. Also,
we emphasize that the parameters N 0

ijk must be derivable from some joint probability
distribution using Equation 12.2.
Given these inputs, we see from Equation 12.1 that the BDe metric for any given

network structure and database can be computed in polynomial time. Consequently, K-
LEARN is in NP. In the following sections, we show that K-LEARN is NP-hard. In
Section 12.2.1, we give a polynomial time reduction from a known NP-complete problem
to 2-LEARN. In Section 12.2.2, we show that 2-LEARN is NP-hard using the reduction
from Section 12.2.1, and then show that K-LEARN for K > 2 is NP-hard by reducing
2-LEARN to K-LEARN. In this discussion, we omit conditioning on background infor-
mation � to simplify the notation.

12.2.1 Reduction from DBFAS to 2-LEARN

In this section we provide a polynomial time reduction from a restricted version of the
feedback arc set problem to 2-LEARN. The general feedback arc set problem is stated in
Garey and Johnson (1979) as follows:

FEEDBACK ARC SET

INSTANCE: Directed graph G = (V;A), positive integer K � jAj.
QUESTION: Is there a subset A0 � A with jA0j � K such that A0 contains at least one
arc from every directed cycle in G?

It is shown in Garvill (1977) that FEEDBACK ARC SET remains NP-complete for
directed graphs in which no vertex has a total in-degree and out-degree more than three.
We refer to this restricted version as DEGREE BOUNDED FEEDBACK ARC SET,
or DBFAS for short.
Given an instance of DBFAS consisting of G = (V;A) and K, our task is to specify, in

polynomial time, the �ve components of an instance of 2-LEARN. To simplify discussion,
we assume that in the instance of DBFAS, no vertex has in-degree or out-degree of zero.
If any such vertex exists, none of the incident edges can participate in a cycle and we can
remove the vertex from the graph without changing the answer to the decision problem.
To help distinguish between the instance of DBFAS and the instance of 2-LEARN,

we adopt the following convention. We use the term arc to refer to a directed edge in
the instance of DBFAS, and the term edge to refer to a directed edge in the instance of
2-LEARN.
We construct the variable set U as follows. For each node vi in V , we include a corre-

sponding binary variable vi in U . We use V to denote the subset of U that corresponds
to V . For each arc ai 2 A, we include �ve additional binary variables ai1; : : : ; ai5 in U .
We use Ai to denote the subset of U containing these �ve variables, and de�ne A to be
A1 [ : : : [ AjAj. We include no other variables in U .
The database D consists of a single case C1 = f1; : : : ; 1g.
The relative prior probability of every network structure is one. This assignment satis�es

our constraint of prior equivalence. From Equation 12.1 with databaseD = C1 and relative
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prior probabilities equal to one, the BDe metric|denotedMBDe(D;BS)|becomes

MBDe(C1; BS) =
Y
i

N 0
ijk

N 0
ij

(12:3)

where k is the state of xi equal to one, and j is the instance of �i such that the state of
each variable in �i is equal to one. The reduction to this point is polynomial.
To specify the necessary N 0

ijk and N 0
ij parameters, we specify a prior network and then

compute the parameters using Equation 12.2, assuming an arbitrary equivalent sample
size of one.3 From Equation 12.3, we have

MBDe(C1; BS) =
Y
i

p(xi = 1j�i = 1; : : : ; 1; Bh
SC
) (12:4)

To demonstrate that the reduction is polynomial, we show that the prior network can
be constructed in polynomial time. In Section 12.2.3 (Theorem 12), we show that each
probability in Equation 12.4 can be inferred from the prior network in constant time due
to the special structure of the network.
We denote the prior Bayesian network B = (BS ;BP ). The prior network B contains

both hidden nodes, which do not appear in U , and visible nodes which do appear in U .
Every variable xi in U has a corresponding visible node in B which is also denoted by
xi. There are no other visible nodes in B. For every arc ak from vi to vj in the given
instance of DBFAS, B contains ten hidden binary nodes and the directed edges as shown
in Figure 1 at the end of this subsection.
In the given instance of DBFAS, we know that each node vi in V is adjacent to either

two or three nodes. For every node vi in V which is adjacent to exactly two other nodes
in G, there is a hidden node hi in B and an edge from hi to xi. There are no other edges
or hidden nodes in B.
We use hij to denote the hidden node parent common to visible nodes xi and xj. We

create the parameters BP as follows. For every hidden node hij we set

p(hij = 0) = p(hij = 1) =
1

2

Each visible node in B is one of two types. The type of a node is de�ned by its conditional
probability distribution. Every node ai5 in B (corresponding to the �fth variable created
in U for the ith arc in the instance of DBFAS) is a type II node, and all other nodes are
type I nodes. A type I node has the conditional probability distribution shown in Table
12.1.
We say that two variables in U are prior siblings if the corresponding nodes in the prior

network B share a common hidden parent. We use Sxi to denote the set of all variables
in U which are prior siblings of xi.
For each type II node ai5, we de�ne the distinguished siblings as the set Dai5 =

fai3; ai4g � Sai5 . Table 12.2 shows the conditional probability distribution of a type II
node xi with distinguished siblings fxj; xkg.

3Because there is only one case in the database, only the ratios
N 0

ijk

N 0

ij

are needed (see Equation 12.3),

and from Equation 12.2 the equivalent sample size is irrelevant. In general the equivalent sample size will
need to be speci�ed to uniquely determine the parameter values.
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TABLE 12.1. Conditional probability distribu-
tion for a type I node.

hij hik hil p(xi = 1jhij; hik; hil)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 0

TABLE 12.2. Conditional probability distribu-
tion for a type II node xi with Dxi = fxj; xkg.

hij hik hil p(xi = 1jhij ; hik; hil)
0 0 0 1

3

0 0 1 1
0 1 0 2

3

0 1 1 0
1 0 0 2

3

1 0 1 0
1 1 0 1

3

1 1 1 0

There are jV j+5jAj visible nodes in B, each visible node has at most three hidden node
parents, and each probability table has constant size. Thus, the construction of B takes
time polynomial in the size of the instance of DBFAS.
We now derive the value for p. From Equation 12.4, we obtain

MBDe(C1; BS) =
Y
i

p(xi = 1j�i = 1; : : : ; 1; Bh
SC
)

=
Y
i

�3�j�i\Sxi j �
p(xi = 1j�i = 1; : : : ; 1; Bh

SC
)

�3�j�i\Sxi j

= �(3n�
P

i
j�i\Sxi j)

Y
i

s0(xij�i; Si) (12.5)

where � < 1 is a positive constant that we shall �x to be 15=16 for the remainder of the
paper.
Let � be the total number of prior sibling pairs as de�ned by B, and let  be the number

of prior sibling pairs which are not adjacent in BS . The sum
P

i j�i \ Sxij is the number
of edges in BS which connect prior sibling pairs and is therefore equal to ��. Rewriting
Equation 12.5, we get

MBDe(C1; BS) = �(3n�(��))
Y
i

s0(xij�i; Si) = c0 � �
Y
i

s0(xij�i; Si) (12:6)

We now state 3 lemmas, postponing their proofs to Section 12.2.3. A network structure
BS is a prior sibling graph if all pairs of adjacent nodes are prior siblings. (Not all pairs
of prior siblings in a prior sibling graph, however, need be adjacent.)

Lemma 1 Let BS be a network structure, and let BS0 be the prior sibling graph created

by removing every edge in BS which does not connect a pair of prior siblings. Then it

follows that MBDe(C1; BS0) �MBDe(C1; BS)

Throughput the remainder of the paper, the symbol � stands for the constant 24=25.

Lemma 2 If BS is a prior sibling graph, then for every type I node xi in BS , if �i

contains at least one element, then s0(xij�i; Si) is maximized and is equal to m1 = 64=135.
If �i = ;, then s0(xij�i; Si) = � �m1.
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Lemma 3 If BS is a prior sibling graph, then for every type II node xi in BS , if �i = Dxi ,

where Dxi is the set of two distinguished siblings of xi, then s0(xij�i; Si) is maximized and

is equal to m2 = 40=81. If �i 6= Dxi then s0(xij�i; Si) � � �m2.

Finally, we de�ne p in the instance of 2-LEARN as

p = c0m
jV j
1

�
m4

1m2

�jAj
�K (12:7)

where m1 and m2 are de�ned by Lemma 2 and 3 respectively, and c0 is the constant from
Equation 12.6.
The value for p can be derived in polynomial time. Consequently, the entire reduction

is polynomial.
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FIGURE 1. Subgraph of the prior net B corre-
sponding to the kth arc in A from vi to vj.

ak1 ak2

ak3

k4a

ak5i jv v

FIGURE 2. Optimal con�guration of the edges
incident to the nodes in Ak corresponding to
the arc from vi to vj.

12.2.2 Proof of NP-Hardness

In this section, we �rst prove that 2-LEARN is NP-hard using the reduction from the
previous section. Then, we prove that K-LEARN is NP-hard for all k > 1, using a
reduction from 2-LEARN.
The following lemma explains the selection of p made in Equation 12.7, which in turn

facilitates the proof that 2-LEARN is NP-hard. Let k be the number of prior sibling pairs
fxi; xjg which are not adjacent in BS , where at least one of fxi; xjg is in Ak. It follows
that

P
k k = , and we can express Equation 12.6 as

MBDe(C1; BS) = c0

2
4 Y
xi2V

s0(xij�i; Si)

3
5
2
4Y

j

t(Aj; j)

3
5 (12.8)

where t(Aj; j) = �j
Q
xi2Aj

s0(xij�i; Si).

Lemma 4 Let BS be a prior sibling graph. If each node in Ak is adjacent to all of its

prior siblings, and the orientation of the connecting edges are as shown in Figure 2, then

t(Ak; k) is maximized and is equal to m4
1 �m2. Otherwise, t(Ak; k) � � �m4

1 �m2.

Proof: In Figure 2, every type I node in Ak has at least one prior sibling as a parent, and
the single type II node has its distinguished siblings as parents. Thus, by Lemmas 2 and
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3, the score s0(xij�i; Si) for each node xi 2 Ak is maximized. Furthermore, every pair of
prior siblings are adjacent. Thus, we have

t(Aj; j) = �j
Y

xi2Aj

s0(xij�i; Si) = �0 �m1 �m1 �m1 �m1 �m2

Suppose there exists another orientation of edges incident to the nodes in Ak such that
that t(Ak; k) > � �m4

1 �m2. Because � < � (1516 <
24
25), every pair of prior siblings must be

adjacent in this hypothetical con�guration. Furthermore, every node in Ak must achieve
its maximum score, else the total score will be bounded above by � �m4

1 �m2. From Lemma
3 and Lemma 2, it follows that the resulting con�guration must be identical to Figure 2
2

The next two theorems prove that 2-LEARN is NP-hard.

Theorem 5 There exists a solution to the 2-LEARN instance constructed in Section

12.2.1 with MBDe(C1; BS) � p if there exists a solution to the given DBFAS problem

with A0 � K.

Proof: Given a solution to DBFAS, create the solution to 2-LEARN as follows: For every
arc ak = (vi; vj) 2 A such that ak 62 A0, insert the edges in BS between the corresponding
nodes in Ak [ vi [ vj as shown in Figure 2. For every arc ak = (vi; vj) 2 A0, insert the
edges in BS between the corresponding nodes in Ak [ vi [ vj as shown in Figure 2, except
for the edge between ak1 and ak2 which is reversed and therefore oriented from ak2 to ak1.
To complete the proof, we must �rst show that BS is a solution to the 2-LEARN

instance, and then show that MBDe(C1; BS) is greater than or equal to p. Because each
node in BS has at most two parents, we know BS is a solution as long as it is acyclic. By
construction, BS cannot contain a cycle unless there is a cycle in G for which none of the
edges are contained in A0. Because G is a solution to DBFAS, this implies BS is acyclic.
We now derive MBDe(C1; BS). Let Aopt be the subset of Ak sets which correspond to the
arcs in A nA0. Rewriting Equation 12.8 we get

MBDe(C1; BS) = c0

2
4 Y
xi2V

s0(xij�i; Si)

3
5 �

2
4 Y

Aj2Aopt

t(Aj; j)

3
5 �

2
4 Y

Ak2AnAopt

t(Ak; k)

3
5

Every node xi 2 V has at least one prior sibling node as a parent because each node in the
instance of DBFAS has an in-degree of at least one. Furthermore, Lemma 4 guarantees
that for every Ak in Aopt, t(Aj; j) equals m4

1 �m2. Now consider any Ak in A n Aopt. All
prior sibling pairs for which at least one node is in this set are adjacent in BS , so k is
zero. Furthermore, every node in this set attains a maximum score, except for the type
I node ak2 which by Lemma 2 attains a score of � �m1. Plugging into Equation 12.9 we
have

MBDe(C1; BS) = c0
h
m

jV j
1

i
�
h
(m4

1 �m2)
jAoptj

i
�
h
(m4

1 �m2 � �)
jAnAoptj

i

= c0m
jV j
1

h
m4

1 �m2

ijAj
�jA

0 j

Because � < 1 and jA0j � K we conclude that MBDe(C1; BS) � p. 2
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Theorem 6 There exists a solution to the given DBFAS problem with A0 � K if there ex-

ists a solution to the 2-LEARN instance constructed in Section 12.2.1 withMBDe(C1; BS) �
p.

Proof: Given the solution BS to the instance of 2-LEARN, remove any edges in BS which
do not connect prior siblings. Lemma 1 guarantees that the BDe score does not decrease
due to this transformation.
Now create the solution to DBFAS as follows. Recall that each set of nodes Ak corre-

sponds to an arc ak = (vi; vj) in the instance of DBFAS. De�ne the solution arc set A0

to be the set of arcs corresponding to those sets Ak for which the edges incident to the
nodes in Ak are not con�gured as shown in Figure 2.
To complete the proof, we �rst show that A0 is a solution to DBFAS, and then show

that jA0j � K. Suppose that A0 is not a solution to DBFAS. This means that there exists
a cycle in G that does not pass through an arc in A0. For every arc (vi; vj) in this cycle,
there is a corresponding directed path from vi to vj in BS (see Figure 2). But this implies
there is a cycle in BS which contradicts the fact that we have a solution to 2-LEARN.
>From Lemma 4 we know that each set Ak that corresponds to an arc in A0 has t(Ak; k)
bounded above by � �m4

1 � m2. Because MBDe(C1; BS) � p, we conclude from Equation
12.8 that there can be at most K such arcs. 2

Theorem 7 K-LEARN with MBDe(D;BS) satisfying prior equivalence is NP-hard for

every integer K > 1.

Proof: Because 2-LEARN is NP-hard, we establish the theorem by showing that any
2-LEARN problem can be solved using an instance of K-LEARN.
Given an instance of 2-LEARN, an equivalent instance of K-LEARN is identical to the

instance of 2-LEARN, except that the relative prior probability is zero for any structure
that contains a node with more than two parents4. It remains to be shown that this
assignment satis�es prior equivalence. We can establish this fact by showing that no
structure containing a node with more than two parents is equivalent to a structure for
which no node contains more than two parents.
Chickering (1995) shows that for any two equivalent structures BS1 and BS2 , there

exists a �nite sequence of arc reversals in BS1 such that (1) after each reversal BS1 remains
equivalent to BS2 , (2) after all reversals BS1 = BS2 , and (3) if the edge vi ! vj is the
next edge to be reversed, then vi and vj have the same parents with the exception that
vi is also a parent of vj. It follows that after each reversal, vi has the same number of
parents as vj did before the reversal, and vj has the same number of parents as vi did
before the reversal. Thus, if there exists a node with l parents in some structure BS , then
there exists a node with l parents in any structure that is equivalent to BS . 2

12.2.3 Proof of Lemmas

To prove Lemmas 1 through 3, we derive s0(xij�i; Sxi) for every pair fxi;�ig. Let xi be
any node. The set �i must satisfy one of the following mutually exclusive and collectively
exhaustive assertions:

4Note that no new parameters need be speci�ed.
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Assertion 1 For every node xj which is both a parent of xi and a prior sibling of xi (i.e.
xj 2 �i \ Sxi), there is no prior sibling of xj which is also a parent of xi.

Assertion 2 There exists a node xj which is both a parent of xi and a prior sibling of
xi, such that one of the prior siblings of xj is also a parent of xi.

The following theorem shows that to derive s0(xij�i; Sxi) for any pair fxi;�ig for which
�i satis�es Assertion 1, we need only compute the cases for which �i � Sxi.

Theorem 8 Let xi be any node in BS. If �i satis�es Assertion 1, then s0(xij�i; Sxi) =
s0(xij�i \ Sxi ; Sxi).

Proof: From Equation 12.5, we have

s0(xij�i; Sxi) =
p(xij�i; B

e
SC
)

�3�j�i\Sxi j
(12:9)

Because �i satis�es Assertion 1, it follows by construction of B that xi is d-separated
from all parents that are not prior siblings once the values of �i \ Sxi are known. 2
For the next two theorems, we use the following equalities.5

p(hij ; hik; hil) = p(hij)p(hik)p(hil) (12:10)

p(hij ; hik; hiljxj) = p(hij jxj)p(hik)p(hil) (12:11)

p(hij ; hik; hiljxj; xk) = p(hij jxj)p(hikjxk)p(hil) (12:12)

p(hij = 0jxi = 1) =
2

3
(12:13)

Equation 12.10 follows because each hidden node is a root in B. Equation 12.11 follows
because any path from xj to either hik or hil must pass through some node x 6= xj which
is a sink. Equation 12.12 follows from a similar argument, noting from the topology of
B that x 62 fxj; xkg. Equation 12.13 follows from Tables 1 and 2, using the fact that
p(hij = 0) equals 1=2.

Theorem 9 Let xi be any type I node in BS for which �i satis�es Assertion 1. If j�i \
Sxij = 0 then s0(xij�i; Sxi) = � � m1. If j�i \ Sxi j = 1 then s0(xij�i; Sxi) = m1. If

j�i \ Sxij = 2 then s0(xij�i; Sxi) = m1.

Proof: Follows by solving Equation 12.9, using Equations 12.10 through 12.13 and the
probabilities given in Table 12.1. 2

Theorem 10 Let xi be any type II node in BS for which �i satis�es assertion 1. If

j�i \ Sxij = 0 then s0(xij�i) = �2 � m2. If j�i \ Sxij = 1 then s0(xij�i) = � � m2. If

j�i \ Sxij = 2 and �i 6= Dxi then s0(xij�i) = � �m2. If �i = Dxi then s0(xij�i) = m2.

5We drop the conditioning event Be
SC

to simplify notation.
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Proof: Follows by solving Equation 12.9, using Equations 12.10 through 12.13 and the
probabilities given in Table 12.2. 2
Now we show that if Assertion 2 holds for the parents of some node, then we can remove

the edge from the parent which is not a sibling without decreasing the score. Once this
theorem is established, the lemmas follow.

Theorem 11 Let xi be any node. If �i = fxj; xkg, where xj 2 Sxi and xk 2 Sxj , then
s0(xijxj) � s0(xijxj; xk).

Proof: For any node we have

p(xi = 1jxj = 1; xk = 1) =
p(xi = 1)p(xk = 1jxi = 1)p(xj = 1jxi = 1; xk = 1)

p(xk = 1)p(xj = 1jxk = 1)

Because xi and xk are not prior siblings, it follows that p(xkjxi) = p(xk). Expressing
the resulting equality in terms of s0(xij�i; Sxi), noting that xi has only one prior sibling
as a parent, and canceling terms of �, we obtain

s0(xijfxj; xkg; Sxi) = s0(xij;; Sxi)
s0(xjjfxi; xkg; Sxj)

s0(xjjfxkg; Sxj)
(12:14)

If xj is a type I node, or if xj is a type II node and xi and xk are not its distinguished
siblings, then s0(xjjfxi; xkg; Sxj) equals s0(xjjfxkg; Sxj), which implies that we can im-
prove the local score of xi by removing the edge from xk. If xj is a type II node, and
Dxj = fxi; xkg, then s0(xjjfxi; xkg; Sxj) equals (1=�) � s

0(xjjfxkg; Sxj), which implies we
can remove the edge from xk without a�ecting the score of xi. 2
The preceding arguments also demonstrate the following theorem.

Theorem 12 For any pair fxi;�ig, where j�ij � 2, the value p(xi = 1j�i) can be com-

puted from B in constant time when the state of each of the variable in �i is equal to

one.
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