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Abstract. We discuss Bayesian methods for model averaging and model selection among Bayesian-network
models with hidden variables. In particular, we examine large-sample approximations for the marginal like-
lihood of naive-Bayes models in which the root node is hidden. Such models are useful for clustering or
unsupervised learning. We consider a Laplace approximation and the less accurate but more computa-
tionally eÆcient approximation known as the Bayesian Information Criterion (BIC), which is equivalent to
Rissanen's (1987) MinimumDescription Length (MDL). Also, we consider approximations that ignore some
o�-diagonal elements of the observed information matrix and an approximation proposed by Cheeseman
and Stutz (1995). We evaluate the accuracy of these approximations using a Monte-Carlo gold standard.
In experiments with arti�cial and real examples, we �nd that (1) none of the approximations are accu-
rate when used for model averaging, (2) all of the approximations, with the exception of BIC/MDL, are
accurate for model selection, (3) among the accurate approximations, the Cheeseman{Stutz and Diagonal
approximations are the most computationally eÆcient, (4) all of the approximations, with the exception of
BIC/MDL, can be sensitive to the prior distribution over model parameters, and (5) the Cheeseman{Stutz
approximation can be more accurate than the other approximations, including the Laplace approximation,
in situations where the parameters in the maximum a posteriori con�guration are near a boundary.
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1. Introduction

There is growing interest in methods for learning graphical models from data. In this
paper, we consider Bayesian methods such as those reviewed in Heckerman (1995) and
Buntine (1996). A key step in the Bayesian approach to learning graphical models is the
computation of the marginal likelihood of a data set given a model. This quantity is the
ordinary likelihood (a function of the data and the model parameters) averaged over the
parameters with respect to their prior distribution. Given a complete data set|that is,
a data set in which each sample contains observations for every variable in the model|
the marginal likelihood can be computed in closed form under certain assumptions (e.g.,
Cooper & Herskovits, 1992; Heckerman & Geiger, 1995). In contrast, when observations
are missing, including situations where some variables are hidden (i.e., never observed),
the exact determination of the marginal likelihood is typically intractable (e.g., Cooper
& Herskovits, 1992). Consequently, approximate techniques for computing the marginal
likelihood are used.
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One class of approximations that has received a great deal of attention in the statistics
community is based on Monte-Carlo techniques. In theory, these approximations are known
to converge to an accurate result. In practice, however, the amount of computer time
needed for convergence can be enormous. An alternative class of approximations is based
on the large-sample properties of probability distributions. This class also can be accurate
under certain assumptions, and are typically more eÆcient1 than Monte-Carlo techniques.

One large-sample approximation, known as a Laplace approximation, is widely used by
Bayesian statisticians (Haughton, 1988; Kass, Tierney, & Kadane, 1988; Kass & Raftery,
1995). Although this approximation is eÆcient relative to Monte-Carlo methods, it has
a computational complexity of O(d2N) or greater, where d is the dimension of the model
and N is the sample size of the data. Consequently, the Laplace approximation can be a
computational burden for large models.

In this paper, we examine other large-sample approximations that are more eÆcient than
the Laplace approximation. These approximations include the Bayesian Information Crite-
rion (BIC) (Schwarz, 1978), which is equivalent to Rissanen's (1987) Minimum-Description-
Length (MDL) measure, diagonal and block diagonal approximations for the Hessian term
in the Laplace approximation (Becker & LeCun, 1988; Buntine & Weigand, 1994), and an
approximation suggested by Cheeseman and Stutz (1995).

Researchers have investigated the accuracy and eÆciency of some of these approxima-
tions. For example, both theoretical and empirical studies have shown that the Laplace
approximation is more accurate than is the BIC/MDL approximation (e.g., Draper, 1993;
Raftery, 1994). Also, Becker and LeCun (1989) and MacKay (1992b) report successful
and unsuccessful applications of the diagonal approximation, respectively, in the context
of parameter learning for probabilistic neural-network models.

In this paper, we �ll in some of the gaps that have been left by previous studies. We
examine empirically the accuracy and eÆciency of all approximations, comparing them
to a Monte-Carlo gold standard. We do so using simple Bayesian networks for discrete
variables that contain a single hidden variable. To our knowledge, this empirical study is
the �rst that compares these approximations with a Monte-Carlo standard in the context
of hidden-variable Bayesian networks, and the �rst that examines the accuracy of the
Cheeseman{Stutz approximation.

Our study is motivated by a need for accurate and eÆcient methods for exploratory
data analysis. One exploration task is clustering. For example, suppose we have repeated
observations for the discrete variablesX = (X1; : : : ; Xn). One possible model for clustering
these observations is shown in Figure 1. In this naive-Bayes model, a discrete hidden
variable C renders the observations conditionally independent, and the joint distribution
over X is given by a mixture of multinomial distributions

p(x) =

rcX
j=1

p(C = cj)

nY
i=1

p(xijC = cj); (1)

where rc is the number of states of the hidden variable C. Each state cj of C corresponds
to an underlying cluster or class in the data. Such models for clustering have been used
by Cheeseman and Stutz (1995) in their system called AutoClass, and have been studied
in depth by statisticians (e.g., Clogg, 1995). The approximations we examine can be used
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Figure 1. A Bayesian-network structure for clustering. The possible states of the hidden variable corre-
spond to the underlying classes in the data.

to determine the number of classes that is optimal according to the data (and prior infor-
mation). Alternatively, we can use the approximations to provide weights for combining
models with di�erent numbers of classes.
Another important area of exploratory data analysis is causal discovery (Spirtes, Gly-

mour, & Scheines, 1993), which can also be cast in terms of learning graphical models.
Heckerman (1995) describes how approximations for the marginal likelihood can be used
for this task.
In this paper, we seek to �nd one or more marginal-likelihood approximations for ex-

ploratory data analysis that are accurate and yet scale to large problems. We examine
these approximations for the class of clustering models depicted in Figure 1. In Section 2,
we review the basic Bayesian approach for model averaging and model selection, empha-
sizing the importance of the marginal likelihood. In Section 3, we describe Monte-Carlo
and large-sample approximations for computing marginal likelihood when there is missing
data. In Section 4, we evaluate the accuracy and eÆciency of the various approximations,
using a Monte-Carlo gold standard for comparison. We examine the approximations using
both synthetic and real-world data.

2. Bayesian methods for learning: The basics

Commonly used Bayesian approaches for learning model structure include model averaging
and model selection. These approaches date back to the work of Je�reys (1939), and
re�nements can be found in (e.g.) Good (1965), Berger (1985), Gull and Skilling (1991),
MacKay (1992a), Cooper and Herskovits (1992), Spiegelhalter, Dawid, Lauritzen, and
Cowell (1993), Buntine (1994), Kass and Raftery (1995), and Heckerman, Geiger, and
Chickering (1995). In this section, we review these methods and how they apply to learning
with Bayesian networks given complete data.
First, we need some notation. We denote a variable by an upper-case letter (e.g.,

X;Y;Xi;�), and the state or value of a corresponding variable by that same letter in
lower case (e.g., x; y; xi; �). We denote a set of variables by a bold-face capitalized letter
or letters (e.g., X;Y;Pai). We use a corresponding bold-face lower-case letter or letters
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(e.g., x;y;pai) to denote an assignment of state or value to each variable in a given set.
We say that variable set X is in con�guration x. We use p(X = xjY = y) (or p(xjy) as
a shorthand) to denote the probability or probability density that X = x given Y = y.
We also use p(xjy) to denote the probability distribution (both mass functions and density
functions) forX givenY = y. Whether p(xjy) refers to a probability, a probability density,
or a probability distribution should be clear from context.
Now, suppose our problem domain consists of variables X = (X1; : : : ; Xn). In addition,

suppose that we have some data D = (x1; : : : ;xN ), which is a random sample from some
unknown probability distribution for X. In this section, we assume that each case x in
D consists of an observation of all the variables in X. We assume that the unknown
probability distribution can be encoded by some statistical model with structure m and
parameters �m. We are uncertain about the structure and parameters of the model, and|
using the Bayesian approach|we encode this uncertainty using probability. In particular,
we de�ne a discrete variable M whose states m correspond to the possible true models,
and encode our uncertainty about M with the probability distribution p(m). In addition,
for each model structure m, we de�ne a continuous vector-valued variable �m, whose
con�gurations �m correspond to the possible true parameters. We encode our uncertainty
about �m using the probability density function p(�mjm).
Given random sample D, we compute the posterior distributions for each m and �m

using Bayes' rule:

p(mjD) =
p(m) p(Djm)P
m0 p(m0) p(Djm0)

(2)

p(�mjD;m) =
p(�mjm) p(Dj�m;m)

p(Djm)
(3)

where

p(Djm) =

Z
p(Dj�m;m) p(�mjm) d�m (4)

is the marginal likelihood. Given some hypothesis of interest, h, we determine the probabil-
ity that h is true given data D by averaging over all possible models and their parameters
according to the rules of probability:

p(hjD) =
X
m

p(mjD) p(hjD;m) (5)

p(hjD;m) =

Z
p(hj�m;m) p(�mjD;m)d�m: (6)

For example, h may be the event that the next observation is xN+1. In this situation, we
obtain

p(xN+1jD) =
X
m

p(mjD)

Z
p(xN+1j�m;m) p(�mjD;m)d�m; (7)
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where p(xN+1j�m;m) is the likelihood for the model. This approach is often referred to
as Bayesian model averaging. Note that no single model structure is learned. Instead, all
possible models are weighted by their posterior probability.
Model averaging is not always appropriate for an analysis. For example, only one or a few

models may be desired for domain understanding or for fast prediction. In these situations,
we select one or a few \good" model structures from among all possible models, and use
them as if they were exhaustive. This procedure is known as model selection when one
model is chosen and as selective model averaging when more than one model is chosen. Of
course, model selection and selective model averaging are also useful when it is impractical
to average over all possible model structures.
Whether a model is \good" will depend on the particular application. For example, a

good model for understanding the causal relationships in a domain will not necessarily be a
good model for a classi�cation or regression task. Also, if a model is to be used for decision
making, its quality will likely depend on the alternatives available and the preferences
of the decision maker. These issues are discussed in more detail by (e.g.) Spiegelhalter
et al. (1993) and Heckerman (1995). Nonetheless, the relative posterior probability of a
model structure, p(D;m) = p(m) p(Djm), is often used as a general-purpose criterion for
selective model averaging and model selection.2 Consequently, the marginal likelihood is
important for both model averaging and model selection.
Now let us assume that our statistical model is a Bayesian network. A Bayesian network

forX consists of a directed-acylic-graph structurem and a set of local distribution functions

p(xijpai;�m;m), where Pai is the set of variables that corresponds to the parents of Xi

in the graph. The structure m encodes the independence assumptions

p(xj�m;m) =
nY
i=1

p(xijpai;�m;m): (8)

Under certain assumptions, the computations needed for Bayesian model averaging, selec-
tive model averaging, or model selection can be done eÆciently and in closed form. Many
researchers who have addressed Bayesian-network learning have adopted at least some of
these assumptions (e.g., Cooper & Herskovits, 1992; Spiegelhalter et al., 1993; Buntine,
1994; Heckerman et al., 1995). The assumptions include:

1. Every variable is discrete, having a �nite number of states. We use xki and pa
j
i to denote

the kth possible state of Xi and the jth possible con�guration of Pai, respectively.
Also, we use ri and qi to denote the number of possible states of Xi and the number
of possible con�gurations of Pai, respectively.

2. Each local distribution function p(xijpai;�m;m) consists of a set of multinomial dis-
tributions, one multinomial distribution for each i and j. That is,

p(xki jpa
j
i ;�m;m) = �ijk ;

where the �ijk are parameters satisfying �ijk > 0 for all i; j; and k, and
Pri

k=1 �ijk = 1
for all i and j. For convenience, we introduce the set of nonredundant parameters
�ij = (�ij2; : : : ; �ijri) for all i and j.
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3. The parameter sets �ij are mutually independent, so that

p(�mjm) =

nY
i=1

qiY
j=1

p(�ij jm):

4. Each parameter set �ij has a Dirichlet distribution, giving

p(�ij jm) = Dir(�ij j�ij1; : : : ; �ijri) /

riY
k=1

�
�ijk�1
ijk ;

where hyperparameters �ijk > 0 for every i; j; and k.

5. The data set D is complete|that is, every variable is observed in every case of D.

Under these assumptions, the parameters remain independent given a random sample D
that contains no missing observations, so that

p(�mjD;m) =

nY
i=1

qiY
j=1

p(�ij jD;m); (9)

and the posterior distribution of each �ij will have the Dirichlet distribution

p(�ij jD;m) = Dir(�ij j�ij1 +Nij1; : : : ; �ijri +Nijri); (10)

where Nijk is the number of cases in D in which Xi = xki and Pai = pa
j
i . Note that the

collection of counts Nijk are suÆcient statistics of the data for the model m. In addition,
we obtain the marginal likelihood

p(Djm) =

nY
i=1

qiY
j=1

�(�ij)

�(�ij +Nij)
�

riY
k=1

�(�ijk +Nijk)

�(�ijk)
; (11)

where �ij =
Pri

k=1 �ijk and Nij =
Pri

k=1Nijk . (See Cooper and Herskovits (1992) for a
derivation.)

These assumptions are restrictive; and there has been a great deal of recent work building
on general results from Bayesian statistics to relax these assumptions. For example, Geiger
and Heckerman (1994) discuss the case where variables are continuous and each local
distribution function corresponds to ordinary linear regression; Buntine (1994) discusses
the more general case where local distribution functions come from the exponential family;
MacKay (1992a) and Gilks, Richardson, and Spiegelhalter (1996) relax the assumption of
parameter independence using hierarchical models; and Buntine (1994), Azevedo-Filho and
Shachter (1995), Heckerman (1995), and Gilks et al. (1996) have addressed the case where
data are missing.
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3. Methods for missing data

When observations for some variables are missing in the data, the parameters for a given
model become dependent, and known closed-form methods cannot be used to determine
marginal likelihood. Approximations for computing marginal likelihood include Monte-
Carlo approaches such as Gibbs sampling and importance sampling (Neal, 1993; Chib,
1995; Raftery, 1996) and large-sample approximations (Kass et al., 1988; Kass & Raftery,
1995). As mentioned in the introduction, Monte-Carlo methods are accurate but typically
ineÆcient, whereas large-sample methods are more eÆcient but known to be accurate only
for large data sets. In this paper, we examine the accuracy and eÆciency of large-sample
methods using a Monte-Carlo approximation as a standard for comparison. In this section,
we describe the approximations that we use.

We note that, when treating missing data, an important consideration is whether or not
we can ignore the process by which observations are missed. For example, a missing datum
in a drug study cannot be ignored if there is the possibility that|as a result of taking
the drug|the patient became too ill to be observed. In contrast, if data are missing due
to clerical errors, it is often reasonable to ignore this fact. When the process by which
observations are missed are not ignorable, the model (or models) should be enhanced to
represent these processes. One simple approach for enhancing a model for (X1; : : : ; Xn) is
to add variables (I1; : : : ; In), where Ii is a binary variable that indicates whether or not
the observation of variable Xi in the original model is missing. Rubin (1976) discusses the
concept of ignorability and methods for treating non-ignorable data collection processes.
The methods for handling missing data that we discuss here assume that the models under
consideration have appropriately represented the data collection process.

3.1. The Laplace approximation and related methods

In this subsection and the two that follow, we consider large-sample approximations. The
accuracy of some of these approximations depend on the coordinate system used to rep-
resent the parameters. In the previous section, where we examined Bayesian networks for
discrete variables, we introduced the coordinate system �m corresponding to the param-
eters �m. An alternative coordinate system, which we denote by �m, corresponds to the
parameters

�ijk = log
�ijk
�ij1

for i = 1; : : : ; n; j = 1; : : : ; qi; k = 2; : : : ; ri. This set of parameters (for �xed i and j)
is known as the natural parameter set for the multinomial distribution (e.g., Bernardo
& Smith, 1994, pp. 199{202). Although �m and �m are equivalent in that there is a
one-to-one mapping between them, MacKay (1996) has shown that the use of the natural
parameters typically leads to a more accurate approximation of the kind that we consider.
Consequently, we use this coordinate system for our approximations. We also use �m

for most of our discussions, although sometimes it will be more convenient to express our
procedures in terms of �m.
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The basic idea behind large-sample approximations is that, as the sample sizeN increases,
p(�mjD;m) / p(Dj�m;m) � p(�mjm) can be approximated as a multivariate-Gaussian
distribution. In particular, let

g(�m) � log(p(Dj�m;m) � p(�mjm)): (12)

Also, de�ne ~�m to be the con�guration of �m that maximizes g(�m). This con�guration
also maximizes p(�mjD;m), and is known as the maximum a posteriori (MAP) con�gu-
ration of �m given D. Using a second degree Taylor polynomial of g(�m) about

~�m to
approximate g(�m), we obtain

g(�m) � g(~�m)�
1

2
(�m � ~�m)A(�m � ~�m)

t; (13)

where (�m� ~�m)
t is the transpose of row vector (�m� ~�m), and A is the negative Hessian

of g(�m) evaluated at ~�m. Raising g(�m) to the power of e and using Equation 12, we
obtain

p(Dj�m;m) p(�mjm) (14)

� p(Dj~�m;m) p(~�mjm) expf�
1

2
(�m � ~�m)A(�m � ~�m)

tg:

Hence, the approximation for p(�mjD;m) / p(Dj�m;m) p(�mjm) is Gaussian. Integrat-
ing both sides of Equation 14 over �m and taking the logarithm, we obtain the approxi-
mation

log p(Djm) � log p(Dj~�m;m) + log p(~�mjm) +
d

2
log(2�)�

1

2
log jAj; (15)

where d is the dimension of m|that is, the number of parameters in �m. For Bayesian
networks satisfying the assumptions described in the previous section, d =

Qn
i=1 qi(ri� 1).

This approximation technique for integration is known as Laplace's method, and we refer
to Equation 15 as the Laplace approximation. Kass et al. (1988) have shown that, under
certain conditions, the relative error of this approximation, given by

[p(Djm)]Laplace � [p(Djm)]correct
[p(Djm)]correct

;

is Op(1=N), where N is the number of cases in D. Thus, the Laplace approximation can
be extremely accurate.
Several of the conditions used by Kass et al. to characterize the accuracy of the Laplace

approximation are worth noting, because they are violated in some of our experiments.
One condition is that the MAP con�guration ~�m does not lie on the boundary of �m. In
Section 4.5, we examine how violations of this condition a�ect the accuracy of the Laplace
(and other) approximations.
Another condition used by Kass et al. is that, given D, there is a unique MAP con�gura-

tion ~�m. When this condition holds, the parameters of the model are said to be identi�ed.
There are two common situations in which the parameters of a Bayesian network with
hidden variables are not identi�ed. In one case, known as aliasing, the state labels of a
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hidden variable can be interchanged without a�ecting p(�mjD;m). In Section 3.5, we
discuss methods for recovering an accurate Laplace approximation when aliasing occurs.
In the other case, the likelihoods p(xj�m;m) for all x can be encoded by a smaller set
of parameters than �m. That is, the dimension of the model is less than the number
of parameters in �m (e.g., Geiger, Heckerman, & Meek, 1996). Consequently, the model
will have an (uncountably) in�nite number of MAP con�gurations for �m. We know of
no formal construction of a Laplace approximation that is accurate in this circumstance.
Nonetheless, for our experiments, the issue of reduced dimensionality is likely to be mute.
In particular, Geiger et al. (1996) provide evidence that the models we examine in this
paper do not have redundant parameters.

To compute the Laplace approximation, we must determine ~�m and the Hessian of
�g(�m) evaluated at ~�m. We discuss methods for �nding ~�m in Section 3.2. Meng and
Rubin (1991) describe a numerical technique for computing the second derivatives in the
Hessian. Raftery (1995) shows how to approximate the Hessian using likelihood-ratio tests
that are available in many statistical packages. Thiesson (1997) demonstrates that, for
multinomial distributions, the second derivatives can be obtained using Bayesian-network
inference. We use Thiesson's method in our experiments.

Although Laplace's approximation is eÆcient relative to Monte-Carlo approaches, the
computation of jAj is nevertheless intensive for large-dimension models. One simpli�cation
is to approximate the Hessian A with a block-diagonal matrix, where the entries corre-
sponding to �@2g(�m)=@�ijk@�abc are set to zero, for i 6= a. A further simpli�cation is
to approximate A using only its diagonal elements. These Block and Diagonal approxima-
tions have been considered by Buntine (1994) and Becker and LeCun (1989), respectively,
in feed-forward neural networks. Roughly speaking, in using these approximations, we are
forcing independence among parameters that may not in fact be independent.

We obtain another eÆcient (but less accurate) approximation by retaining only those
terms in Equation 15 that increase with N : log p(Dj~�m;m), which increases linearly with
N , and log jAj, which increases as d logN . Also, for large N , ~�m can be approximated

by �̂m, the con�guration of �m that maximizes p(Dj�m;m), known as the maximum
likelihood (ML) con�guration of �m. Thus, we obtain

log p(Djm) � log p(Dj�̂m;m) �
d

2
logN: (16)

This approximation is called the Bayesian information criterion (BIC). Schwarz (1978)
has shown that the relative error of this approximation is Op(1) for a limited class of
models. Haughton (1988) has extended this result to curved exponential models. Kass and
Wasserman (1995) and Raftery (1995) have shown that, for particular priors, the BIC has
a relative error of Op(N

�1=2).

The BIC approximation is interesting in several respects. First, it depends neither on
the prior3 nor the coordinate system of the parameters. Second, the approximation is
quite intuitive. Namely, it contains a term measuring how well the parameterized model
predicts the data (log p(Dj�̂m;m)) and a term that penalizes the complexity of the model
(d=2 logN). Third, the BIC approximation is exactly minus the Minimum Description
Length (MDL) criterion described by Rissanen (1987).
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3.2. Computation of MAP and ML con�gurations

To compute any of the approximations that we have described, we need to determine either
the maximum a posteriori or maximum likelihood con�guration for �m.
One class of techniques for �nding a MAP or ML con�guration is gradient-based op-

timization. For example, we can use gradient ascent, where we follow the derivatives of
p(�mjD;m) or p(Dj�m;m) to a local maximum. Russell, Binder, Koller, and Kanazawa
(1995) and Thiesson (1997) show how to compute the derivatives of the likelihood for
a Bayesian network with multinomial distributions. Buntine (1994) discusses the more
general case where the local distribution functions come from the exponential family.
Another technique for �nding a local MAP or ML con�guration is the expectation{

maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977). To �nd a local MAP or
ML con�guration, we begin by assigning a con�guration to �m somehow (e.g., at random).
Next, we compute the expected suÆcient statistics for a complete data set, where expec-
tation is taken with respect to the joint distribution for X conditioned on the assigned
con�guration of �m and the known data D. For Bayesian networks with discrete variables,
we compute

Ep(xjD;�m;m)(Nijk) =

NX
l=1

p(xki ;pa
j
i jxl;�m;m); (17)

where xl is the possibly incomplete lth case in D. When Xi and all the variables in Pai
are observed in case xl, the corresponding term for this case requires a trivial computation:
it is either zero or one. Otherwise, we can use any Bayesian-network inference algorithm
(e.g., Jensen, Lauritzen, & Olesen, 1990) to evaluate the term. This computation is called
the expectation step of the EM algorithm.
Next, we use the expected suÆcient statistics as if they were actual suÆcient statistics

from a complete random sample Dc. If we are doing an ML calculation, then we determine
the con�guration of �m that maximizes p(Dcj�m;m). This con�guration is given by
�ijk = log(�ijk=�1jk), where

�ijk =
Ep(xjD;�m;m)(Nijk)Pri
k=1 Ep(xjD;�m;m)(Nijk)

:

If we are doing a MAP calculation, then we determine the con�guration of �m that maxi-
mizes the posterior density of the parameters. When working with the coordinate system
�m, this con�guration is given by �ijk = log(�ijk=�1jk), where

�ijk =
�ijk +Ep(xjD;�m;m)(Nijk)Pri

k=1(�ijk +Ep(xjD;�m;m)(Nijk))
:

This assignment is called the maximization step of the EM algorithm. Dempster et al.
(1977) showed that iteration of the expectation and maximization steps will converge to a
local maximum. The EM algorithm is typically applied when suÆcient statistics exist (i.e.,
when local distribution functions are in the exponential family), although generalizations
of the EM algorithm have been used for more complicated local distributions (e.g., Saul,
Jaakkola, & Jordan, 1996).
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The models that we consider often have more than one local maximum. Consequently,
these techniques will not necessarily �nd the global MAP or ML con�guration. One often-
used partial solution to this problem is to start from many (usually random) initial con�g-
urations of �m. We use a variant of this technique in our experiments.

3.3. The Cheeseman{Stutz approximation

Another approximation for the marginal likelihood is based on the fact that p(Djm) can
be computed eÆciently for complete data. Consider the equality

p(Djm) = p(D0jm)

R
p(D;�mjm) d�mR
p(D0;�mjm) d�m

; (18)

where D0 is any completion of the data set D. Because D0 is a complete data set, we can
compute p(D0jm) using Equation 11. Now, suppose we apply Laplace approximations to
the numerator and denominator of the second term. Roughly speaking, the resulting ap-
proximation for p(D) will be best if the quantities p(D;�mjm) and p(D0;�mjm)|regarded
as functions of �m|are similar in shape, so that errors in the two Laplace approximations
tend to cancel. The two functions cannot be similar in an absolute sense, because D0

contains more information than does D, and hence p(D0;�mjm) will be more peaked than
p(D;�mjm). Nonetheless, we can make the two functions more similar by completing D0

so that they peak for the same con�guration of �m. That is, we want
~�
0

m, the MAP con�g-
uration of �m given D0, to be equal to ~�m. One way to obtain this equality is to complete
D0 so that its suÆcient statistics match the expected suÆcient statistics given D and m.
In the case of Bayesian networks with discrete variables and multinomial distributions, this
completion is given by

N 0
ijk = Ep(xjD;�m;m)(Nijk) (19)

for all i; j; and k, where the N 0
ijk are the suÆcient statistics for D0. This choice for D0 is

also desirable from a computational standpoint, because|when using the EM algorithm
to �nd ~�m|the suÆcient statistics N 0

ijk are computed in the last expectation step.
Applying the Laplace approximation Equation 15 to the numerator and denominator of

Equation 18, and using the fact that ~�
0

m = ~�m, we obtain

log p(Djm) � log p(D0jm)� log p(D0j~�m;m) +
1

2
log jA0j+ log p(Dj~�m;m)�

1

2
log jAj; (20)

where A0 is the negative Hessian of log p(D0;�mjm) evaluated at ~�m. Because we derive
this approximation using two Laplace approximations, Equation 20 must have a relative
error that is no worse than Op(1=N). Nonetheless, a careful derivation may show that it
is more accurate.
A more eÆcient approximation is obtained by applying the BIC/MDL approximation to

the numerator and denominator of Equation 18. In this case, we have

log p(Djm) � log p(D0jm)� log p(D0j~�m;m) +
d0

2
logN + log p(Dj~�m;m)�

d

2
logN (21)
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where we have used the MAP rather than ML con�guration for �m, and we have allowed
for the possibility that d0, the dimension of m for complete data, may be greater than the
dimension of m for the actual data. Equation 21 (without the correction for dimension)
was introduced by Cheeseman and Stutz (1995) for use as a model-selection criterion in
AutoClass. We shall refer to Equation 21 as the Cheeseman{Stutz approximation. We
note that this approximation can be easily extended to any statistical model that has
suÆcient statistics. For example, the Cheeseman{Stutz approximation can be applied to
any Bayesian network with local distribution functions from the exponential family. Our
heuristic derivation of the Cheeseman{Stutz approximation does not tell us whether it is
better to use the MAP or ML con�guration in the approximation. Thus, we examine both
alternatives in our experiments.

3.4. Monte-Carlo methods

We now discuss Monte-Carlo methods, concentrating on the method we use to evaluate
the accuracy of the large-sample approximations.
A common Monte-Carlo method, introduced by Geman and Geman (1984), is known as

Gibbs sampling. Given variables X = (X1; : : : ; Xn) with some joint distribution p(x), we
can use a Gibbs sampler to approximate the expectation of a function f(x) with respect
to p(x) as follows. First, we choose an initial state for each of the variables in X, say at
random. Next, we unassign the current state ofX1 and compute its probability distribution
given the con�guration of the other n � 1 variables. We repeat this procedure for each
variable X2; : : : ; Xn, thus creating a new sample of x. We then iterate the previous steps,
keeping track of the simple average of f(x) over the samples we construct. After a (usually
small) number of iterations|known as the \burn-in" phase|the possible con�gurations
of x will be sampled with probability p(x).4 Consequently, the simple average of f(x) over
these samples will converge to Ep(x)(f(x)). Introductions to Gibbs sampling and other
Monte-Carlo methods|including discussions of convergence|are given by Neal (1993)
and by Madigan and York (1995).
The particular approach we use to compute the marginal likelihood is known as the

Candidate method (Chib, 1995; Raftery, 1996). The approach is based on Bayes' theorem,
which says that

p(Djm) =
p(Dj��m;m) p(��mjm)

p(��mjD;m)

for any con�guration ��m. To compute p(Djm), we choose some con�guration ��m, evaluate
the numerator exactly, and approximate the denominator using a Gibbs sampler.
To approximate p(��mjD;m), we �rst initialize the states of the unobserved variables in

each case. As a result, we have a complete random sample Dc. Second, we choose some
variable Xil (variable Xi in case l) that is not observed in the original random sample D,
and reassign its state according to the probability distribution

p(x0iljDc n xil;m) =
p(x0il; Dc n xiljm)P
x00

il

p(x00il; Dc n xiljm)
;
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where Dc n xil denotes the data set Dc with observation xil removed, and the sum in
the denominator runs over all states of variable Xil. The terms in the numerator and
denominator are marginal likelihoods for complete data, and thus can be computed us-
ing Equation 11. Third, we repeat this reassignment for all unobserved variables in D,
producing a new complete random sample D0

c. Fourth, we compute the posterior density
p(��mjD

0
c;m) using Equations 9 and 10 (adjusted for the coordinate system �m). Finally,

we iterate the previous three steps, and use the simple average of p(��mjD
0
c;m) as our

approximation.

In principle, the Candidate method can be applied using any con�guration ��m. Nonethe-
less, certain con�gurations lead to faster convergence of the Gibbs sampler. Chib (1995) and
Raftery (1996) suggest that ~�m be used. Nonetheless, in experiments with multinomial-
mixture models, we have found that the use of this con�guration underestimates p(��mjD;m).
This error occurs because, when ~�m is used, there are con�gurations of Dc such that (1)
p(��mjDc;m) is extremely large, and (2) the con�guration Dc is extremely unlikely to be
visited. Consequently, when these con�gurations of Dc are not visited in a particular run,
the simple average of p(��mjDc;m) is substantially less than p(��mjD;m).

We have experimented with an alternative method for choosing ��m. For a �xed number
of samples after the burn-in phase, we keep track of the con�gurations of Dc. After these
samples have been collected, we retain the con�guration D�

c that occurred most frequently.
We break ties by choosing the con�guration with the largest value of p(Dcjm). Finally,
we set ��m to be the con�guration that maximizes p(�mjD

�
c ;m). In experiments with

multinomial-mixture models, such as those presented in Section 4.4, this choice of ��m
yields low-noise estimates of p(Djm).

3.5. Hidden-variable models and aliasing

Given a Bayesian network m for X, suppose Xi 2 X is never observed in data set D.
Because Xi is hidden, the likelihood p(Dj�m;m) will be invariant to arbitrary relabelings
of the states of Xi. Thus, if the prior p(�mjm) is invariant to such relabelings, so will be
the posterior p(�mjD;m). It follows that if ~�m is a MAP con�guration of �m, then there
will be additional MAP con�gurations corresponding to the relabelings of the states of Xi.
We shall refer to each such con�guration and its neighborhood as an alias. If each alias is
distinct (i.e., nondegenerate), then there will be ri! of them.

When there are multiple distinct aliases, the parameters of m are no longer identi�able.
Nonetheless, assuming the aliases are well separated, we can apply the Laplace approxima-
tion locally around each of them, summing the contributions of each peak. Assuming one
hidden variable and distinct aliases, this procedure amounts to multiplying the marginal
likelihood corresponding to one alias by ri!. This correction applies to the Block, Diagonal,
BIC/MDL, and Cheeseman{Stutz approximations as well.

With suÆcient computation, the Candidate approximation for p(Djm) does not need to
be corrected for aliases, because the Gibbs sampler will visit all assignments to the hidden
variable(s). In our experiments, however, the Gibbs sampler tends to stay near one alias.
We can compensate for this failure to move among aliases by multiplying the approximation
for marginal likelihood by ri!, as we do for the large-sample approximations. We obtain
a more accurate correction, however, by (in e�ect) running ri! Gibbs samplers in parallel.
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In particular, for every completion Dc that we actually visit, we compute p(�
�
mjD

0
c;m) for

each equivalent assignment D0
c, and average the results. To compute p(��mjD;m), we then

average these averages.5 This procedure yields an accurate correction factor even when the
Gibbs sampler moves among aliases and when there are degenerate aliases. The procedure
is expensive for large ri, but was not prohibitive for our experiments.

3.6. Computational complexity

The accuracy of these approximations should be balanced against their computation costs.
These costs will depend on the topology of the Bayesian network under consideration. Here,
we consider costs for an arbitrary Bayesian network with discrete variables and a naive-
Bayes discrete-variable clustering model of the form shown in Figure 1 (a multinomial-
mixture model). In both cases, we assume that the EM algorithm is used to �nd a MAP
or ML con�guration of �m.

For an arbitrary Bayesian network, the evaluation of Cheeseman{Stutz, Diagonal, and
BIC/MDL is dominated by the determination of the MAP or ML con�guration of the
parameters. The time complexity of this task is O(eiN + ed), where e is the number of
EM iterations and i is the cost of inference in Equation 17.6

The evaluation of the Laplace approximation typically is dominated by the computation
of the Hessian determinant. The time complexity of this computation (using Thiesson's
1997 method) is O(diN + d3). Because i > d and (typically) N > d, the computation of
the Hessian determinant is O(diN). The Block approximation has the same complexity as
the Laplace approximation, because one block may contain most of the parameters.

For the naive-Bayes clustering model, the evaluation of the Cheeseman{Stutz, Diagonal,
and BIC/MDL measures are again dominated by the determination of the MAP or ML
con�guration. In the expectation step, we compute|for each case|the posterior proba-
bility of the hidden variable given the observed variables and the parameters. Thus, the
cost of MAP/ML determination is O(edN).

The Laplace approximation is again dominated by the computation of the Hessian de-
terminant, having a cost of O(d2N). The computational cost of the Block approximation
has two components. The cost of the MAP/ML determination is O(edN). The Hessian
contains O(n) blocks each of size O(rc), where rc is the number of states of the hidden
variable; consequently, the evaluation of the Hessian costs O(r2cnN) = O(rcdN). Thus,
the overall cost of the Block computation is O(rcdN + enN).

4. Experiments with multinomial-mixture models

Our primary goal is to evaluate the accuracy and eÆciency of the Block, Diagonal, BIC/MDL,
and Cheeseman{Stutz approximations when used for model averaging and model selection
among hidden-variable Bayesian networks. We evaluate the Cheeseman{Stutz approxima-
tion using both the maximum a posteriori (CS MAP) and maximum likelihood (CS ML)
con�gurations of �m. Similarly, we evaluate the BIC/MDL approximation using both
MAP and ML con�gurations. A secondary goal is to evaluate the accuracy of the Laplace
approximation when applied to hidden-variable Bayesian networks.
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Our approach is straightforward. For a variety of models and data sets, we compare
values for the marginal likelihood given by the various approximations with that given by
a Monte-Carlo method that we believe to be accurate. In addition, we measure the time
required to compute each approximation.

The models we evaluate are the naive-Bayes clustering models of the form shown in
Figure 1. We consider synthetic models and data sets as well as models for real-world
data sets. For a particular data set, we compute approximate marginal likelihoods for
a series of naive-Bayes test models, where the only di�erence among test models is the
number of states rc of the hidden variable C. We begin with a test model with rc = 1,
which corresponds to a model where the observed variables (X1; : : : ; Xn) are mutually
independent. We then increase rc, typically observing a peak in the marginal likelihood,
until the marginal likelihood as determined by all approximations is clearly decreasing. To
evaluate the accuracy of an approximation for the purpose of model selection, we compare
the value of rc that would be selected using that approximation with the value of rc
that would be selected using the Monte-Carlo standard. To evaluate the accuracy of an
approximation for the purpose of model averaging, we examine how each approximation
weighs the second most likely model relative to the most likely model.

In our evaluations of data sets generated from synthetic models, the true number of states
of the hidden variable (rct) is available. Nonetheless, we do not use these values in our
evaluation of the approximations. In particular, we are interested in how well the various
methods approximate the marginal likelihood. A comparison between the best value for rc
selected by an approximation and rct would only serve to introduce confounding factors in
this evaluation. For example, although the true model may have rct = 4, the sample size of
the data may not be suÆciently large to support a mixture model with four components.
Nonetheless, an approximation that tends to select models that are too large may (by
chance) select rc = 4. Consequently, if we were to use rct = 4 for our comparison, we
would incorrectly deem this selection to be a success.

4.1. Experimental parameters

All experiments were run on a P6 200MHz machine under the Windows NTTM operating
system. The various algorithms were implemented in C++.

We used the method of Thiesson (1997) to evaluate the Hessian of � log p(�m; Djm).
To compute the Cheeseman{Stutz scoring function, we assumed that dimensions d0 and d
were equal. Although we know of no proof that this assumption is correct, Geiger et al.
(1996) provide evidence that the relation holds.

We used the EM algorithm to determine the MAP and ML con�gurations needed by
the approximations. We determined MAP con�gurations in the coordinate system �m.
The EM algorithm ran until either the relative di�erence between successive values for
p(�mjD;m) (or p(Dj�m;m)) was less than 10�8 or 400 iterations were reached. In pre-
liminary experiments, substantial additional iterations led to relative di�erences in the
approximations of less than 10�4. Such di�erences did not have a signi�cant e�ect on
results.

In order to avoid local MAP and ML con�gurations, we used a variant of the multiple-
restart approach described in Section 3.2. First, we sampled 64 con�gurations of the
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parameters �m from distributions that are uniform in �m. Next we performed one ex-
pectation and maximization step, and retained the 32 initial con�gurations that led to
the largest values of p(�mjD;m). Then we performed two expectation and maximization
steps, retaining the 16 best initial con�gurations. We continued this procedure, doubling
the number of expectation-maximization steps at each iteration, until only one con�gura-
tion remained.

The exact marginal likelihood for test models with a single mixture component (rc = 1)
can be computed in closed form (Equation 11). We used these exact values in lieu of
approximate values for all experiments. In Section 4.4, we discuss the parameters of the
Monte-Carlo standard.

In all experiments, we used a uniform prior distribution over model structures, p(m) =
constant. Consequently, p(mjD) / p(Djm), and the value rc selected by a particular
approximation method corresponded to the value of rc for which that method's marginal
likelihood was a maximum. We denote this value by rc�. We used Dirichlet prior distri-
butions given by �ijk = 1 (uniform in �m) in all experiments except the one in which we
investigated sensitivity to parameter priors.

4.2. Preliminary experiment

The goal of our �rst experiment was to gain a rough understanding of the accuracy of the
approximations. We performed this study with synthetic models and data. In particular,
we generated naive-Bayes models for various values of n and rct. For each n and rct
considered, we created a model in which each observed variable Xi had two states. For
each model, we set the parameters of the root node to be uniform (in �m), and sampled
the remaining parameters from a uniform distribution (in �m). We then generated data
with sample size N from the model using a forward sampling technique. That is, we
sampled a state C = cj according to p(C), and then sampled a state of each Xi according
to p(xijC = cj). Finally, we discarded the samples of C, retaining only the samples of
X1; : : : ; Xn.

For values that we considered|n = 32; 64; 128, rct = 4; 6; 8, and N = 50; 100; 200;
400|we obtained plots of log p(Djm) versus rc that were similar in form. A typical plot
for n = 64, rc = 4, and N = 400 is shown in Figure 2(a). Overall, the Candidate, Laplace,
Block, Diagonal, and Cheeseman{Stutz MAP approximations usually peaked at the same
value of rc. The Laplace, Block, Diagonal, and Cheeseman{Stutz MAP approximations
usually agreed with the Monte-Carlo standard for rc � rc�, but fell below the standard
for rc > rc�. The BIC/MDL approximation peaked for smaller values of rc and decreased
more sharply to the right of the peak than did the other approximations. The Cheeseman{
Stutz approximation was more accurate when the MAP con�guration was used, whereas
the BIC/MDL approximation was more accurate when the ML con�guration was used.

These experiments were informative, but they did not help to discriminate the Laplace,
Block, Diagonal, and Cheeseman{Stutz approximations. After additional experiments, we
identi�ed a likely cause: the clusters were well separated. In Section 4.3, we examine this
phenomenon and describe more challenging data sets for analysis.

Before we do so, consider the observation that the large-sample approximations yield
values that fall below those of the Monte-Carlo standard for rc > rc�. One possible
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Figure 2. Plots of log p(Djm) versus rc for synthetic data sets with n = 64, rct = 4, and N = 400. (a)
The baseline wherein each variable xi has two states and model parameters are sampled from independent
distributions. (b) A higher resolution view of (a). (c) Model parameters are dependent with � = 1:4. (d)
Model parameters are dependent with � = 0:7. The separation scores for each experimental condition are
shown below its plot. \CS" is an abbreviation for \Cheeseman{Stutz".

explanation is that many local MAP con�gurations may exist when rc > rc�. If this
condition occurs, then the marginal likelihood could be signi�cantly underestimated by a
Laplace approximation around a single local maximum. To test this hypothesis, we used
random restarts in several of our experiments to visit hundreds of di�erent local maxima,
summing the contributions to the marginal likelihood from each maximum. In no case,
however, did this approach improve performance signi�cantly.

Another explanation is that, when rc > rc�, the test model will contain more classes
than are needed to �t the data. Thus, it is likely that some of the classes will be empty

in the sense that p(C = cj j~�m;m) will be close to zero for some cj , and the parameters
corresponding to the conditional probabilities of the empty classes will be superuous. As
a result, the posterior distribution p(�mjD;m) will be a ridge rather than a peak, and
the large-sample approximations, which assume the posterior distribution is a peak, will
underestimate the marginal likelihood. In almost all of our experiments, we have found
that some of the classes are empty when rc > rc�.



198 MAX CHICKERING AND DAVID HECKERMAN

x

(a)

p(x)

x

(b)

p(x)

x

p(x)

(c)

Figure 3. Gaussian mixtures in which the two components are (a) well separated, (b) partially separated,
and (c) poorly separated.

4.3. Cluster separation

The concept of cluster separation is diÆcult to visualize for multinomial-mixture models.
To understand this concept, let us consider one-dimensional Gaussian-mixture models as
shown in Figure 3. Each model contains two Gaussian components. As we move from left
to right, the components become less separated. If the mixtures are well separated, as in
Figure 3(a), then for most values of x, p(cj jx) = 1 for either j = 1 or j = 2. If the mixtures
are poorly separated, as in Figure 3(c), then for most values of x, p(cj jx) = p(cj); j = 1; 2.
Generalizing these observations to mixtures of arbitrary distributions, we can think of
cluster separation as the degree to which we are certain about the state of C a posteriori,
averaged over all possible observations x.
When clusters are well separated in this sense, the learning task is straightforward. In

particular, each observation will belong to one class (i.e., one state of C) with high proba-
bility. Thus, it is not surprising that the approximations do well. To evaluate the degree
of separation of our models, we de�ne the separation score of a model (m;�m) to be the
negative expected entropy of the posterior distribution for C scaled to the range [0; 1]:

Sep(m;�m) = 1�
1

log rc

X
x

p(xj�m;m)

"
rcX
k=1

�p(cj jx;�m;m) log p(cj jx;�m;m)

#
: (22)

Because the sum over x is intractable, we use the �nite-sample version of Equation 22,
which depends on the random sample D:

Sep(m;�m; D) = 1�
1

N log rc

X
x2D

rcX
k=1

�p(cj jx;�m;m) log p(cj jx;�m;m): (23)

Note that values for Sep(m;�m; D) increase with increasing separation. The separation
score for the model in Figure 2(a) is 1.0000, con�rming our observation that the clusters
are well separated.
To provide the approximations with more of a challenge, we should decrease model sepa-

ration. One approach for doing so is to decrease n, the number of observed variables. This
approach is not useful, however, because we want to evaluate the accuracy and eÆciency of
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the approximations for a wide range of n. Another approach is to sample the parameters
from a distribution that is biased toward a uniform distribution (in �m). We do not use
this approach either, because we do not believe such parameter distributions are common.
Another approach that produces more realistic models is to introduce dependencies

among the parameters such that p(xijc
j ;�m;m) and p(xijc

l;�m;m) are more likely to
have similar values for l 6= j than if they were chosen independently. Consider a simple
approach for introducing such dependencies, in which we let �(xki jc

j) and �(xki jc
j) be the

parameters corresponding to p(xki jc
j) in the coordinate systems �m and �m, respectively.

First, we sample the parameters �(xki jc
1) for all i from uniform distributions and transform

these parameters to �m. Then, we set

�(xki jc
j) = �(xki jc

1) + Normal(0; �)

for i = 1; : : : ; n, j = 2; : : : ; rc, and k = 2; : : : ; ri, where Normal(0; �) is a sample from a
normal distribution with mean zero and standard deviation �. As � decreases toward zero,
the cluster separation decreases.
As shown in Figure 2, when we decrease cluster separation, the value rc� decreases. This

observation is not surprising. In the extreme case � = 0, the clusters are superimposed,
and rc� should be one. Given this observation, we want to challenge the approximations
with clusters that partially overlap, but not by so much that (in e�ect) only one cluster
remains.

4.4. Monte-Carlo standard

Before we consider additional experiments, let us examine our Monte-Carlo gold standard:
the Candidate method.
Recall that the Candidate method uses a Gibbs sampler to determine p(��mjD;m) (Sec-

tion 3.4). This Gibbs sampler has four parameters: �, the number of samples Dc used to
burn in the Gibbs sampler; �, the number of samples used to select ��m; , the number
of samples that separate the phase where ��m is selected and the phase where p(��mjD;m)
is computed; and Æ, the number of samples used to compute p(��mjD;m). In preliminary
experiments with the Candidate method, we increased these parameters until we obtained
a low-noise approximation for log p(Djm) across the spectrum of values n = 32; 64; 128,
rct = 4; 6; 8, and N = 50; 100; 200; 400. We evaluated the noise in the approximation for
a given value of the parameters by examining plots of log p(Djm) versus rc.
We found that the burn-in and ��m selection phases could be combined without increasing

the noise in the approximation. This observation is not surprising, because typical (and
likely) con�gurations for Dc usually do not occur until the Gibbs sampler has burned in.
Except when N was small (N � 50), no con�guration of Dc was visited more than once.
Consequently, in most experiments, the con�guration D�

c chosen to select �
�
m was the most

likely Dc. For rct � 4, we found that � = 100;  = 10; and Æ = 100 produced a low-noise
approximation. For rct � 8, we found that � = 400;  = 10; and Æ = 400 was adequate.
Also, the noise in the approximation was slightly lower when we sampled an initial Dc from
the MAP con�guration of �m rather than from a distribution that is uniform in �m. We
used these algorithm parameters in our experiments (including those on real-world data
sets).
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Figure 4. Plots of log p(Djm) versus rc for synthetic data sets with n = 64, rct = 2, N = 10, and various
degrees of cluster overlap.

As we discussed in Section 4.2, the Candidate and Laplace approximations produced
similar values for p(Djm) for rc � rc� (see Figure 2), and disagreements for rc > rc�
could be explained. These observations, combined with the fact that the approximation
had low noise, suggested that the Candidate approximation was accurate. Nonetheless,
the Candidate approximation became noisy for n < 32, even when we increased � and
Æ to 1600. Furthermore, low noise does not guarantee high accuracy. Consequently, we
wanted to further evaluate the accuracy of the Candidate method. To do so, we considered
data sets with small sample sizes, so that we could determine p(Djm) exactly by summing
p(Dcjm) over all possible con�gurations of Dc consistent with D. We used data generated
from synthetic models with n = 64, rct = 2, and N = 10. Results for various degrees of
overlap (� = 1:25; 3:5; 5:75) are shown in Figure 4.

In all plots, the Candidate approximation agreed closely with the exact value for p(Djm).
In addition, although large-sample approximations are unlikely to be valid for samples of
size 10, the relationships among the Candidate, Laplace, Block, and Diagonal approxima-
tions for N = 10 were similar to those for large N . In particular, the Laplace, Block, and
Diagonal approximations agreed with the Candidate approximation for rc � rc�, but fell



EFFICIENT APPROXIMATIONS FOR THE MARGINAL LIKELIHOOD 201

below the Candidate approximation for rc > rc�. These results provide additional evidence
that the Candidate approximation is accurate.

We note that the Cheeseman{Stutz MAP approximation agreed more closely with the
Candidate (and exact) values for p(Djm) than did the Laplace approximation. We suggest
an explanation for this observation in the following section.

4.5. Sensitivity analyses for synthetic data

We evaluated the approximations for a variety of synthetic models and data sets. First,
we examined the accuracy of the approximations as a function of n (the number of input
variables), rct (the number of classes in the generative model), and N (the sample size
of the data). For each n and rct considered, we created a model in which each observed
variable Xi had two states. For each model, we sampled the parameters for its hidden
node from a uniform distribution (in �m) so as to generate clusters of various sizes. We
generated dependent parameters for the conditional distributions as described in Section 4.3
using � = 1:75. For most experiments, this choice for � produced clusters that overlapped
partially but not completely. For each experiment|de�ned by a given n; rc, and N|we
evaluated the approximations for �ve data sets generated with di�erent random seeds.

Figures 5, 6, and 7 show plots of log p(Djm) versus rc for one of the �ve data sets
in the experiments where n, rc, and N were varied, respectively. The most surprising
aspect of the results was that the introduction of cluster overlap did not lead to signi�cant
di�erences in the accuracy of the approximations. As in the case of no cluster overlap, the
Candidate, Laplace, Block, Diagonal, and Cheeseman{Stutz MAP approximations usually
peaked at the same value of rc. The Laplace, Block, Diagonal, and Cheeseman{Stutz MAP
approximations usually agreed with the Monte-Carlo standard for rc � rc�, but fell below
the standard for rc > rc�. The BIC/MDL approximation peaked for smaller values of rc
and decreased more sharply to the right of the peak than did the other approximations.
The Cheeseman{Stutz approximation was more accurate when the MAP con�guration was
used, whereas the BIC/MDL approximation was more accurate when the ML con�guration
was used.

To evaluate the accuracy of the approximations when used for model selection, we com-
puted the quantity �rc�|the di�erence between rc� for the Monte-Carlo standard and rc�
for the approximation|and averaged this di�erence over the �ve data sets for each exper-
iment. Table 1 contains these averages. With the exception of the Cheeseman{Stutz ML
and BIC/MDL approximations, the approximations almost always select the same model.

To evaluate the accuracy of the approximations when used for model averaging, we ex-
amined how each approximation penalized the second most likely model relative to the
most likely model. In particular, we used the Candidate method to identify the two model
structures with the largest (m1) and second largest (m2) marginal likelihoods. We then
computed the log Bayes factor log p(Djm1)=p(Djm2) for each approximation. If an ap-
proximation were useful for model averaging, then these scores would be similar to that
for the Monte-Carlo standard. The results for the Laplace approximation are shown in
Table 2. In 20 of the 40 unique entries, the log Bayes factor was less than 3:6 = ln(37)
for the Monte-Carlo standard, but greater than 14:4 = ln(1:8 million) for the Laplace
approximation. In these cases, if we had used the Laplace approximation, we would have
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Figure 5. Sensitivity to n, the number of observed variables. Approximate log marginal likelihood versus
rc for models with rct = 4 and � = 1:75 and data sets with N = 400, when (a) n = 32, (b) n = 64, and
(c) n = 128.

removedm2 from consideration. In contrast, if we had used the Monte-Carlo standard,m2

would have contributed to the average, perhaps signi�cantly, depending on the hypothesis
of interest. Therefore, in (at least) these 20 cases, the Laplace approximation was not a
good substitute for the Monte-Carlo standard. The other approximations were at least as
inaccurate.

Next, we examined the sensitivity of the approximations to parameter priors. For the
experimental condition de�ned by n = 64, rct = 8, N = 400, and � = 1:75, we evaluated
the approximations using three Dirichlet priors: �ijk = 1 (uniform in �m); �ijk = 1=riqi;
and �ijk = 0:1=riqi. The second and third priors are a special case of the priors described
by Heckerman et al. (1995). The results are shown in Figure 8.

All approximations except the BIC/MDL ML were sensitive to the variation in priors.7

This result demonstrates that it can be important to choose a prior carefully. In addition,
it shows that the BIC/MDL approximation is inferior to the others in the sense that it is
unresponsive to the prior.8
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Figure 6. Sensitivity to rct, the number of classes in the true model. Approximate log marginal likelihood
versus rc for models with n = 64 and � = 1:75 and data sets with N = 400, when (a) rct = 4, (b) rct = 6,
and (c) rct = 8.

Recall one of the conditions used to derive the Laplace approximation: the MAP con�g-
uration ~�m should lie away from the boundary of �m. We examined the sensitivity of the
approximations to violations of this condition. In particular, we generated a model with
n = 64 and rct = 2, assigning parameters according to the procedure in Section 4.3 with
� = 0. That is, we generated a model with two identical multinomial mixtures. Then,
with probability 0.1, we replaced each conditional probability p(xki jc

j ;�m;m) with zero
(a boundary value), and then renormalized each conditional distribution. If both prob-
abilities p(x1i jc

j ;�m;m) and p(x2i jc
j ;�m;m) were set to zero, then we chose one of the

probabilities at random and set it to one. We then generated a data set with N = 400.
For comparison, we ran the experiment de�ned by n = 64, rct = 2, and N = 400, with
parameters generated using � = 1:75. For both experimental conditions, the parame-
ters for the hidden node were equal to 0.5. The interesting result, shown in Figure 9, is
that the Cheeseman{Stutz MAP approximation yielded almost the same values as did the
Monte-Carlo standard, whereas the other approximations performed as usual. That is, the
Cheeseman{Stutz MAP approximation was more robust to violations of this assumption
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Figure 7. Sensitivity to N , sample size. Approximate log marginal likelihood versus rc for models with
n = 64, rct = 4, and � = 1:75, when (a) N = 50, (b) N = 100, (c) N = 200, and (d) N = 400.

than were the other approximations, including the Laplace approximation. The result was
reproducible for a variety of models.

This observation o�ers an explanation for the small N results in Figure 4, in which
the Cheeseman{Stutz MAP approximation is more accurate than the other large-sample
approximations. In particular, for small N , many observations for X that are possible
are not realized in the data set. Consequently, many of the parameters in the MAP
con�guration for �m will be close to the boundary.

4.6. Computation times

As we have discussed, the accuracy of the approximations should be balanced against their
computational costs. Figure 10 shows the costs for the experiment de�ned by n = 64,
rct = 8, N = 400, and � = 1:75. The costs shown for the Candidate, Laplace, Block,
Diagnonal, Cheeseman{Stutz, and BIC/MDL approximations exclude the computation of
the MAP or ML con�guration using the EM algorithm. This plot is in agreement with
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Table 1. Errors in model selection|mean (s.d.) over �ve data sets.

Conditions �rc�
n rct N Laplace Block Diagonal CS MAP CS ML BIC MAP BIC ML

32 4 400 0 0 0 0 0 0 0
64 4 400 0 0 0 0 0 0 0
128 4 400 0:2(0:4) 0:2(0:4) 0:2(0:4) 0:2(0:4) 0:2(0:4) 1.0(0) 1.0(0)

64 4 400 0 0 0 0 0 0 0
64 6 400 0:4(0:5) 0:4(0:5) 0:4(0:5) 0:4(0:5) 0:4(0:5) 0:4(0:5) 0:4(0:5)
64 8 400 0:2(0:4) 0:2(0:4) 0:2(0:4) 0:6(0:5) 1:0(0:7) 1:0(0:7) 1:0(0:7)

64 4 50 0:2(0:4) 0:2(0:4) 0:2(0:4) 0 0:4(0:5) 0:6(0:5) 0:6(0:5)
64 4 100 0 0 0 0 0:2(0:4) 0:8(0:5) 0:6(0:5)
64 4 200 0 0 0 0 0 0 0
64 4 400 0 0 0 0 0 0 0

Table 2. Errors in model averaging. Log Bayes factors given by the Candidate (C) and Laplace (L)
methods are shown.

Conditions log p(Djm1)=p(Djm2)
data set 1 data set 2 data set 3 data set 4 data set 5

n rct N C L C L C L C L C L

32 4 400 0.5 18.5 1.7 17.7 3.5 23.5 4.8 17.7 4.2 19.0
64 4 400 4.9 65.8 4.0 32.4 3.5 15.1 7.7 16.3 4.1 24.7
128 4 400 12.6 113 3.0 59.2 8.0 280 3.6 77.5 0.1 -6.3

64 4 400 4.9 65.8 4.0 32.4 3.5 15.1 7.7 16.3 4.1 24.7
64 6 400 1.8 0.0 6.0 28.7 0 9.3 3.1 0.0 0.6 4.8
64 8 400 0.3 16.9 1.0 14.8 5.7 20.3 1.6 -4.6 10.3 74.4

64 4 50 3.2 14.5 1.8 -2.1 2.2 20.1 19.3 24.0 2.2 41.2
64 4 100 2.8 39.1 3.2 42.2 2.8 29.8 3.0 41.9 3.1 23.2
64 4 200 2.9 55.4 2.2 35.9 4.3 22.5 3.5 31.8 3.4 32.8
64 4 400 4.9 65.8 4.0 32.4 3.5 15.1 7.7 16.3 4.1 24.7



206 MAX CHICKERING AND DAVID HECKERMAN

(b)(a)

(c)

Sep: 0.8968 Sep: 0.8968

Sep: 0.8968

-16500

-15000

-13500

-12000

1 2 3 4 5 6 7 8 9 10 11 12

CS ML

BIC ML
BIC MAP

Others
Candidate

-16500

-15000

-13500

-12000

1 2 3 4 5 6 7 8 9 10 11 12

Others

Candidate

CS MAP/ML

BIC MAP/ML

Others

Candidate

-16500

-15000

-13500

-12000

1 2 3 4 5 6 7 8 9 10 11 12

Figure 8. Sensitivity to parameter priors. In each experiment, n = 64; rct = 8; N = 400; and � = 1:75.
The Dirichlet priors are given by (a) �ijk = 1, (b) �ijk = 1=riqi, and (c) �ijk = 0:1=riqi:

the computational complexities of the algorithms given in Section 3.6. Note that the EM
algorithm dominates the cost of the Block, Diagonal, Cheeseman{Stutz, and BIC/MDL
approximations. In contrast, the evaluation of the Hessian is more expensive than the cost
of �nding the MAP con�guration using EM. Also, note that the Monte-Carlo standard is
almost as eÆcient as the Laplace approximation for larger models.

4.7. Real-world data sets

To augment our experiments with synthetic data, we evaluated the various approximations
on real-world data sets. We checked several data repositories, but could not locate data sets
that involved discrete-variable clustering. Instead, we obtained classi�cation data sets from
the UCI Machine Learning Repository (Merz & Murphy, 1996) and discarded the known
class information. We used the small soybean (Michalski & Chilausky, 1980), standard
audiology (Bareiss & Porter, 1987), and lung cancer (Hong & Yang, 1994) databases. For
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Figure 10. Computation time in seconds versus model dimension for the experimental condition n = 64,
rct = 8, N = 400, and � = 1:75.

the audiology data set, where both training and test data were available, we merged these
data sources.

The results, shown in Figure 11 and Table 3, are similar to those for synthetic data. In
particular, the BIC/MDL approximation tended to peak early and fell o� more sharply
than did the other approximations. The large-sample approximations (except Cheeseman{
Stutz MAP) fell o� more rapidly than did the Candidate approximation for rc � rc�.
The Cheeseman{Stutz approximation was more accurate when the MAP con�guration was
used, whereas the BIC/MDL approximation was more accurate when the ML con�guration
was used. For the audiology data set, most approximations selected only two classes, far
less than the speci�ed number. Nonetheless, there were only two classes in the data set
with more than 20 instances.
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There were three deviations from the studies with synthetic data that occurred in the
evaluation of all three data sets. First, there were some values of rc for which the Laplace
and/or Block approximation could not be computed, because the determinant of the Hes-
sian (or block) was negative. Second, the Cheeseman{Stutz MAP approximation was more
accurate than the other large-sample approximations. Third, many of the parameters were
near the boundary in the MAP con�gurations for �m. This last observation explains the
�rst two. In particular, when parameters are near the boundary, log p(�mjD;m) need not
be concave down around ~�m. Furthermore, as we saw in Section 4.5, the Cheeseman{Stutz
MAP is more robust to situations in which parameters in the MAP con�guration are near
the boundary.

5. Discussion

We have evaluated the accuracy and eÆciency of the Laplace, Block-Diagnonal, Diagonal,
Cheeseman{Stutz, and BIC/MDL approximations for the marginal likelihood of naive-
Bayes models with a hidden root node. In this evaluation, we used the Monte-Carlo
Candidate method as a gold standard. From our experiments, we draw a number of
conclusions:

� None of approximations are accurate when used for model averaging.

� All of the approximations, with the exception of BIC/MDL, are accurate for model
selection.

� Among the accurate approximations, the Cheeseman{Stutz and Diagonal approxima-
tions are the most eÆcient.

� All of the approximations, with the exception of BIC/MDL, can be sensitive to the
prior distribution over model parameters.

� The Cheeseman{Stutz approximation is more accurate when evaluated using the max-
imum a posteriori (MAP) con�guration of the parameters, whereas the BIC/MDL
approximation is more accurate when evaluated using the maximum likelihood (ML)
con�guration.

� The Cheeseman{Stutz approximation can be more accurate than the other approxima-
tions, including the Laplace approximation, in situations where the parameters in the
MAP con�guration are near a boundary.

Our �ndings are valid only for naive-Bayes models with a hidden root node, but these
results are important, because they apply directly to probability-based clustering. Also,
it seems likely that our results will extend to models for discrete variables where each
variable that is unobserved has an observed Markov blanket. Under these conditions, each
Bayesian inference required by the scoring functions (e.g., Equation 17) reduces to a naive-
Bayes computation. Nonetheless, more extensive experiments are warranted to address
models with more general structure and non-discrete distributions.
Although we have examined the computation of marginal likelihood for model averaging

and model selection, we have not concentrated on how to handle the parameters once a
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Figure 11. Plots of approximate log marginal likelihoods versus rc for the (a) small soybean (b) standard
audiology, and (c) lung cancer data sets.

Table 3. Number of classes selected by the approximations.

rc�
CS BIC

data set n rct N Candidate Laplace Block Diagonal MAP ML

Small soybean 35 4 47 4 3{4 3{4 4 4 3
Audiology 70 24 226 2 2 ? 2 2 2
Lung cancer 56 3 32 3 ? ? 1 2 1

model or set of models have been selected. If computation time is not an issue and one
is concerned primarily with prediction, then a Monte-Carlo average over parameters is
probably best (Neal, 1991). Nonetheless, one sometimes needs a fast model for prediction
or one may want point values for the parameters to facilitate an understanding of the
domain. What is best in these circumstances remains an open question.
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Notes

1. Throughout this paper, we use \eÆciency" to refer to computational eÆciency as opposed to statistical
eÆciency.

2. An equivalent criterion that is often used is log(p(mjD)=p(m0jD)) = log(p(m)=p(m0))+log(p(Djm)=p(Djm0)).
The ratio p(Djm)=p(Djm0) is known as a Bayes factor.

3. One of the technical assumptions used to derive this approximation is that the prior distribution is
non-zero around �̂m.

4. For this observation to hold, the Gibbs sampler must be irreducible. That is, the probability distribution
p(x) must be such that we can eventually sample any possible con�guration of X given any possible
initial con�guration of X. For example, if p(x) contains no zero probabilities, then the Gibbs sampler
will be irreducible.

5. This procedure was suggested by David MacKay (1996) in a personal communication.

6. Using Jensen et al.'s (1990) inference algorithm, only one inference is needed per expectation step.

7. Marginal likelihoods for rc = 1 were sensitive to priors because we computed these values exactly using
Equation 11.

8. In previous experiments (Chickering & Heckerman, 1996), we considered another large-sample approx-
imation for the marginal likelihood suggested by Draper (1995). His approximation su�ers from the
same lack of sensitivity to the prior as does the BIC/MDL ML approximation.
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