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Given a set of possible models for variables X and a set of possible parameters for each model, the
Bayesian “estimate” of the probability distribution for X given observed data is obtained by averag-
ing over the possible models and their parameters. An often-used approximation for this estimate is
obtained by selecting a single model and averaging over its parameters. The approximation is useful
because it is computationally efficient, and because it provides a model that facilitates understanding
of the domain. A common criterion for model selection is the posterior probability of the model. An-
other criterion for model selection, proposed by San Martini and Spezzafari (1984), is the predictive
performance of a model for the next observation to be seen. From the standpoint of domain under-
standing, both criteria are useful, because one identifies the model that is most likely, whereas the
other identifies the model that is the best predictor of the next observation. To highlight the difference,
we refer to the posterior-probability and alternative criteria as the scientific criterion (SC) and engi-
neering criterion (EC), respectively. When we are interested in predicting the next observation, the
model-averaged estimate is at least as good as that produced by EC, which itself is at least as good as
the estimate produced by SC. We show experimentally that, for Bayesian-network models containing
discrete variables only, the predictive performance of the model average can be significantly better
than those of single models selected by either criterion, and that differences between models selected
by the two criterion can be substantial.
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1. Introduction

Suppose that the joint probability distribution over a set of vari-
ables X = {X1, . . . , Xn} is given by p(x |θm,m), where m is a
model with parameters θm .1 In addition, suppose that the true
model and its parameters are unknown, but we nevertheless want
to estimate the true distribution somehow given a random sample
D = {x1, . . . , xN } from the true distribution.

In the Bayesian approach to this problem, we define a discrete
variable M whose states correspond to the possible true models,
and encode our uncertainty about M with the probabilities p(m).
In this paper, we assume that there are a finite number of possible
true models.2 For each possible model m, we define the (vector)
variable 2m whose values correspond to the possible values of
the parameters for m. We encode our uncertainty about2m using
the probability distribution p(θm |m). We assume that p(θm |m)
is a probability density function. Given random sample D, we
compute the posterior distributions for M and each 2m using

Bayes’ rule:

p(m | D) = p(m)p(D |m)

6m ′ p(m′)p(D |m′)

p(θm | D,m) = p(θm |m)p(D |θm,m)

p(D |m)

where

p(D |m) =
∫

p(D | θm,m) p(θm |m) dθm

and estimate the joint distribution for X by averaging over all
possible models and their parameters:

p(x | D) =
∑

m

p(m | D)
∫

p(x |θm,m) p(θm | D,m) dθm

(1)

The approach is sometimes called Bayesian model averaging.
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In many real-world problems, the sum over possible mod-
els is intractable. Or, even when the sum can be performed, the
averaged model is difficult to interpret. In either of these circum-
stances, a common approach is to select a single “good” model
m, and to estimate the jont distribution for X using

p(x | D,m) =
∫

p(x |θm,m) p(θm | D,m) dθm

This approach is known as Bayesian model selection.
Model scores that define “good” models are commonly known

as criteria. A criterion commonly used in Bayesian model se-
lection is the logarithm of the relative posterior probability of
the model log p(m, D) = log p(m) + log p(D |m). Under the
assumption that the prior distribution for M is uniform, an equiv-
alent criterion is log p(D |m), the log marginal likelihood of the
data given the model. In the remainder of this paper, we as-
sume that p(m) is uniform to simplify our presentation. The
generalization of the mathematics to non-uniform model priors
is straightforward.

The log-marginal-likelihood criterion has the following inter-
esting interpretation described by Dawid (1984). From the chain
rule of probability, we have

log p(D |m) =
N∑

l=1

log p(xl | x1, . . . , xl−1,m)

The term p(xl | x1, . . . , xl−1,m) is the prediction for xl made by
model m after averaging over its parameters. The log of this term
can be thought of as the score or utility for this prediction under
the scoring rule or utility function log p(x).3 Thus, a model with
the highest log marginal likelihood is also a model that is the best
sequential predictor of the data D under the log scoring rule.

This observation suggests an alternative criterion for choosing
m. Rather than select a model that is the best sequential predictor
of the data we have seen, we can select a model that is the best
predictor of the next observation we will see, given the data
we have seen. Using again the log scoring rule, the utility to
maximize is

log p(xN+1 | D,m)

Because we have not yet seen xN+1, we average this utility over
all possible observations, obtaining the following criterion for
model m given data D:

EC(m, D) =
∑
xN+1

p(xN+1 | D) log p(xN+1 | D,m) (2)

where p(xN+1 | D) is given by equation 1. We call this crite-
rion the engineering criterion for reasons that we make clear in
a moment. This criterion, first suggested by Chow (1981) and
made more precise by San Martini and Spezzaferri (1984), is
the negative cross entropy between the correct posterior distri-
bution p(xN+1 | D) and the posterior distribution determined by
model m.

In terms of model understanding, both criteria are useful. Us-
ing the log-marginal-likelihood criterion, we identify a model

that is most likely to be true. Using the alternative criterion
given by equation 2, we identify a model that is the best predic-
tor of the next observation. To emphasize the difference between
the two criteria, we refer to the log-marginal-likelihood criterion
and equation 2 as the scientific criterion (SC) and engineering
criterion (EC), respectively. In any given analysis, one or both
models may provide insights about the domain.

When we substitute p(xN+1 | D) for p(xN+1 | D,m) in equa-
tion 2, the engineering criterion obtains its maximum value.
That is, the criterion is maximized when we make predictions
using the model-averaged estimate. Also, as N approaches in-
finity, the model that includes the true distribution will have
a posterior probability that approaches one, and we obtain
p(xN+1 | D) = p(xN+1 | D,m). Consequently, in this limit, the
estimates produced by model averaging and by model selection
using the two criterion coincide.

But what happens is the non-asymptotic regime? If we are
interested in predicting the next observation, how much do we
lose by using a single model instead of the model average? How
much more do we lose by using a model selected by SC rather
than one selected by EC? Alternatively, if we are interested in
model understanding, how different are the models produced
by the SC and EC criteria? In this paper, we investigate these
questions in the context of Bayesian-network models for discrete
variables.

2. Bayesian networks

A Bayesian network for a set of variables X = {X1, . . . , Xn}
is the pair (S, P), where S is a directed acyclic graph, which
we call the structure of the Bayesian network, and P is a set of
local probability distributions. The nodes in S are in one-to-one
correspondence with the variables X. We use Xi to denote both
the variable and its corresponding node, and Pai to denote the
parents of node Xi in S as well as the variables corresponding to
those parents. The lack of possible arcs in S reflect conditional
independence assertions. In particular, given structure S, the
joint probability distribution for X is given by

p(x) =
n∏

i=1

p(xi | pai ) (3)

The local probability distributions P are the distributions cor-
responding to the terms in the product of equation 3.4

We can use Bayesian networks as models in the sense of
Section 1 as follows. First, we suppose that the true joint distri-
bution for X exhibits precisely the conditional independencies
encoded by some structure S, but we are uncertain about the
identity of S. We write M = ms when precisely the indepen-
dence assertions implied by S hold in the true joint distribution.
Second, for each model ms , we parameterize the local proba-
bility distributions with a finite number of parameters. Expli-
citly conditioning on the model and its parameters, we rewrite



A comparison of scientific and engineering criteria 57

equation 3 as

p(x |θs,ms) =
n∏

i=1

p(xi | pai ,θi ,ms)

where θi are the parameters for the local distribution associated
with Xi , and θs = (θ1, . . . ,θn) are the parameters for model
ms as a whole.

In this paper, we concentrate on the case where every variable
in X is discrete. Let xk

i and pa j
i denote the k th possible state of Xi

and the j th possible state of Pai , respectively. Also, let ri and qi

denote the number of possible states of Xi and Pai , respectively.
We further specialize to the case where p(xi | pai ,θi ,ms) is a
collection of multinomial distributions, one distribution for each
state of Pai :

p
(
xk

i

∣∣ pa j
i ,θi ,ms

) = θi jk

where θi jk > 0 for all i, j , and k, and
∑ri

k=1 θi jk = 1 for all i and
j . Given these parameters, we define the vector combinations

θi j = (θi jk)ri
k=1 θi = (θi j )

qi

j=1

The scientific and engineering criteria can be computed effi-
ciently and in closed form assuming (1) the parameters θi j are

Table 1. Sensitivity to generative model and sample size N. Models msc and mec and corresponding 1r EC values from randomly selected trials
(α = 8)

N msc 1r ECsc(D) mec 1r ECec(D)

Generative model: empty (no arcs)

50 Empty 0.01 X1 → X4 1.09
200 X1 → X4 0.01 X3 → X1 → X4 0.68
800 X3 → X1 ← X4 0.74 X3 → X1 → X4 0.29

3200 Empty 0.00 Empty 0.10

Generative model: X1 → X2 → X3 → X4

50 X1 → X2 → X3 → X4 0.11 X1 → X2 → X3 → X4, 0.07
X1 → X3

200 X1 → X2 → X3 → X4 0.05 X1 → X2 → X3 → X4, 0.00
X2 → X4

800 X1 → X2 → X3 → X4 0.00 X1 → X2 → X3 → X4 0.00
3200 X1 → X2 → X3 → X4 0.00 X1 → X2 → X3 → X4 0.00

Generative model: {X1, X2, X3} → X4

50 {X1, X3, X4} → X2, 0.21 Complete 0.07
X4 ← X1 → X3

200 {X1, X2} → X4 0.00 {X1, X4} → X2, 0.02
X3 → X4 → X1

800 {X1, X2, X3} → X4 0.00 {X1, X2, X3} → X4 0.01
3200 {X1, X2, X3} → X4 0.00 {X1, X2, X3} → X4 0.00

Generative model: complete (no missing arcs)

50 X1 → X2 → X3 → X4 0.05 X1 → X2 → X3 → X4, 0.12
X1 → X3

200 X1 → X2 → X3 ← X4 0.06 X1 → X2 → X3 ← X4, 0.02
X2 → X4

800 {X1, X2, X3} → X4, 0.07 X1 → X3 → X4 → X2, 0.01
X1 → X3 → X2 X3 → X2

3200 Complete 0.00 Complete 0.00

mutually independent:

p(θs | ms) =
n∏

i=1

qi∏
j=1

p(θi j | ms)

(2) each parameter set θi j has a Dirichlet distribution:

p(θi j | ms) = c ·
ri∏

k=1

θ
αi jk−1
i jk

where αi jk > 0 for every i, j , and k, and c is a normalization
constant, and (3) data is complete—that is, there are no missing
observations. Under these assumptions, several researchers (e.g.,
Cooper and Herskovits (1992)) have shown that

p(xN+1 | D,ms) =
n∏

i=1

αi jk + Ni jk

αi j + Ni j

where Xi = xk
i and Pai = pa j

i in xN+1 (k and j depend on
i), Ni jk is the number observations in D in which Xi = xk

i and

Pai = pa j
i , Ni j =

∑ri
k=1 Ni jk , and αi j =

∑ri
k=1 αi jk . In addition,

it can be shown that

p(D | ms) =
n∏

i=1

qi∏
j=1

0(αi j )

0(αi j + Ni j )
·

ri∏
k=1

0(αi jk + Ni jk)

0(αi jk)
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3. Experiments

Our goals are (1) to compare the accuracy of predictions based
on the model average and models selected using the EC and SC
criteria, and (2) to compare the models (structures) selected by
the two criteria. To do so, we performed experiments based on
both synthetic and real data.

In our experiments with synthetic data, we created several
Bayesian networks (all with binary variables), and from them
generated random data sets of various sizes. In all our experi-
ments, we selected models using the two criteria, and compared
the EC for both models with the maximum value for EC obtained

Fig. 1. Sensitivity to generative model and sample size. (a) Fraction of trials in which msc and mec are equivalent. (b) Box plots of1r ECsc(D) for
the non-equivalent models. (c) Box plots of 1r ECec(D) for all models

by using the correct Bayesian prediction:

ECopt(D) =
∑
xN+1

p(xN+1 | D) log p(xN+1 | D)

In particular, we computed

1ECec(D) = ECopt(D)− EC(mec, D)

1ECsc(D) = EC(mec, D)− EC(msc, D)

where msc and mec were the models selected by SC and EC, re-
spectively. Note that both differences are non-negative for any D.
Because it was difficult to compare 1EC values for different
generative models, different priors, and different sample sizes,
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we compared only the relative differences

1r ECec(D) = 1ECec(D)

sd(EC, D)

1r ECsc(D) = 1ECsc(D)

sd(EC, D)

where sd(EC,D) is the (equal-weight) standard deviation of
EC(m, D) over all models. Also, because the number of pos-
sible Bayesian-network structures for n variables is more than
exponential in n, we performed our experiments only for small
n (n = 3, . . . , 6).

We performed three experiments with synthetic data. In our
first experiment, we examined the effect of sample size and
generative network structure on predictive performance, while
fixing priors and the number of variables (n = 4). We selected
several generative Bayesian-network models of varying com-
plexity: (1) the empty model, containing no arcs, (2) the Markov-
chain model X1 → X2 → X3 → X4, (3) a multiple v-structure
model {X1, X2, X3} → X4, and (4) the complete model for the
ordering (X1, X2, X3, X4). For each generative model and for
each of four sample sizes ranging from N = 50 to 3200, we ran
a series of 100 trials. In each trial, we first sampled the para-
meters for the generative model from a uniform distribution,

Table 2. Sensitivity to generative model and equivalent sample size α of the parameter priors. Models msc and mec and corresponding 1r EC
values from randomly selected trials (α = 8)

α msc 1r ECsc(D) mec 1r ECec(D)

Generative model: empty, N = 50, n = 4

2 Empty 0.00 X3 → X4 0.30
8 Empty 0.09 X3 → X1 ← X2 1.51

32 X1 → X2 → X3 0.29 X1 → X2 → X3 → X4 3.38
128 X1 → X2 → X3 → X4 0.00 X1 → X2 → X3 → X4 1.89

Generative model: X1 → X2 → X3 → X4, N = 50, n = 4

2 X3 → X4 0.00 X3 → X4 0.56
8 X3 → X4 0.09 X1 → X2 → X4 → X3 0.54

32 X3 → X4 0.08 X1 → X2 → X4 → X3 0.52
128 X3 → X4 0.26 X1 → X2 → X3 → X4, 0.92

X1 → X3

Generative model: {X1, X2, X3} → X4, N = 50, n = 4

2 Empty 0.00 Empty 0.22
8 Empty 0.07 X1 → X2 ← X3 0.75

32 X1 → X2 → X3 0.14 X1 → X2 → X3 → X4, 1.39
X1 → X3, X2 → X4

128 X1 → X2 → X3 0.25 X1 → X2 → X3 → X4, 1.54
X2 → X4

Generative model: complete N = 50, n = 4

2 X1 → X3 → X4 0.00 X1 → X3 → X4 0.35
8 X1 → X3 → X4 0.08 X2 → X3 → X4 0.41

{X3, X4} → X1

32 X1 → X3 → X4 ← X2 0.12 X2 → X3 → X2 ← X4 0.55
X2 → X3 {X2, X3} → X4

128 X1 → X3 ← X2 → X4 0.18 X1 ← X3 ← X2 → X4 1.08
X3 → X4 X3 → X4 → X1

then generated a random data set of the appropriate size, and
next identified the best model under both criteria. To compute
the criteria for a given model and data set, we used uniform
priors for network structure and Dirichlet parameter priors with
αi jk = 8/ri qi for all i, j , and k. Note that, given our model
and parameter priors, the scientific (and engineering) criteria
for two Markov equivalent structures are equal (e.g., Heckerman
et al. (1995)). Thus, each criterion selects an equivalence class
of models.

Table 1 shows, for each generative model and for each sample
size, the two models selected and the corresponding relative
scores for a single (randomly selected) trial. In Fig. 1, we use
histograms and box plots to summarize the results from the 100
trials. Figure 1(a) shows the fraction of trials in which the models
selected using the two criteria are equivalent. Figure 1(b) shows
a box plot of1r ECsc for all trials in which the two criteria do not
yield equivalent models. Figure 1(c) shows a box plot of1r ECec

for all trials. In all box plots, the top and bottom whiskers extend
to the 90 and 10 percentiles, respectively.

The results confirm our argument that the two criteria se-
lect the same models when the sample size becomes sufficiently
large. More interesting, we found that for small sample sizes,
the engineering criterion tends to select models that are more
complex than those selected by the scientific criterion. A simple
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Fig. 2. Sensitivity to generative model and α. (a) Fraction of trials in which msc and mec are equivalent. (b) Box plots of 1r ECsc(D) for the
non-equivalent models. (c) Box plots of 1r ECec(D) for all models

Fig. 3. Sensitivity to number of variables n. (a) Fraction of trials in which msc and mec are equivalent. (b) Box plots of 1r ECsc(D) for the
non-equivalent models. (c) Box plots of 1r ECec(D) for all models
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explanation for this difference is that, when using EC, we reward
a prediction based on all N observations. In contrast, when using
SC, we reward predictions based on 0, 1, 2, . . . , N − 1 obser-
vations – that is, less data. Thus, EC will tend to select more
complex models, because it can afford to do so without over-
fitting the data. An alternative argument, due to Wray Buntine
(personal communication), is as follows. When using EC, we
choose the model that is closest (in the KL sense) to the cor-
rect posterior distribution for x. This correct distribution is an
average over models, some of which are more complicated than
the most likely model (i.e., the model selected when using SC).
Consequently, when using EC, we tend to select a model that is
more complex than the most likely model.

In our second experiment, we investigated the sensitivity of
model selection to parameter priors. We proceeded as in the
first experiment, except that we used priors αi jk = α/ri qi for
various values of the equivalent sample size α. Also, we used a
single sample size N = 50. Example models and scores from a
single trial are shown in Table 2. Summaries for the 100 trials
are given in Fig. 2. We see that, for each generative model, the
predictive scores for the models selected by each criterion are
fairly insensitive to variations in α.

In the third experiment, we examined the effects of domain
size (n) on model selection. For n = 3, 4, 5, and 6, we created a
generative model from the empty network structure with param-
eters sampled from the uniform distribution. For each generative
model, we ran 100 trials as before, using α = 8 and N = 50
for all trials. Figure 3 summarizes the results. We see that the

Fig. 4. Model selected using both SC and EC criteria for the Sewell
and Shah (1968) data

Fig. 5. Sensitivity to sample size for Sewell and Shah (1968) data. (a) Fraction of trials in which msc and mec are equivalent. (b) Box plots of
1r ECsc(D) for the non-equivalent models. (c) Box plots of 1r ECec(D) for all models

median relative performance of the model average with respect
to the single model selected by the EC criterion is fairly insen-
stive to n. In contrast, the chances that the models selected by the
two criteria are equivalent decrease with increasing n. This latter
finding is reasonable – as n increases, the number of possible
models increases dramatically.

In our experiment with real data, we examined the data set of
Sewell and Shah (1968), who investigated factors that influence
the intention of high school students to attend college. They mea-
sured the following variables for 10,318 Wisconsin high school
seniors: Sex (SEX): male, female; Socioeconomic Status (SES):
low, lower middle, upper middle, high; Intelligence Quotient
(IQ): low, lower middle, upper middle, high; Parental Encour-
agement (PE): low, high; and College Plans (CP): yes, no. For
this experiment, we restricted the possible models as follows:
neither SEX nor SES were allowed to have any parents, and CP
was not allowed to have children. We used a uniform model prior
over all models that were deemed possible.

For this data set, the two criteria yielded the same model,
which is shown in Fig. 4, and the relative score 1r ECec(D) for
the model was small. We tested the sensitivity to sample size for
this data set by selecting 100 random subsets of the data for each
of four different sample sizes. Figure 5 summarizes the results.
Note that, for this domain, the two criterion usually result in the
same model, even with a sample size as small as 50.

4. Conclusions

Our results confirm the conclusions of Draper (1993) and
Madigan et al. (1996) that model averaging produces substan-
tially better predictions than does model selection using SC when
sample sizes are small. Thus, when we are interested in predic-
tion, we should use model averaging (or perhaps a Monte-Carlo
approximation to model averaging) rather than model selection
whenever feasible.

In situations where there is a good reason to select a single
model – for example, a desire to understand the domain – we
have found that the EC and SC criterion may produce substan-
tially different models, again when sample sizes are small. Con-
sequently, we should be careful to appreciate this difference and
use the appropriate criterion.

Finally, the EC criterion is computationally infeasible in all
but trivial situations. Monte-Carlo approximations for both the
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average over all possible models in equation 1 and the sum over
possible states of XN+1 in equation 2 offer promise, but work is
needed to determine the quality of these approximations.
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Notes

1. A technical point worth mentioning is our use of the term variable
and its relationship to the standard definition of a random variable.
A discrete random variable is a function X : Ä → E where E
is a discrete set such that {ω | X (ω) = x} ∈ A for every x ∈ E
whereA is a σ -field and Ä is a sample space of a probability space
(Ä,A, P). We use the term discrete variable, as common to much of
the literature on graphical models, to mean a function Xi : Ä→ Ei ,
parallel to the usual definition of a random variable, but without
fixing a specific probability measure P . A model m for a set of
discrete variables X is simply a set of probability measures on the
Cartesian product×i Ei . Once a particular probability measure from
m is picked, a variable in our sense becomes a random variable in
the usual sense. A similar comment applies to sets X that include
continuous variables.

2. In the nomenclature of Bernardo and Smith (1994), we take the
M-closed view.

3. An axiomatic characterization of this proper scoring rule is given
by Bernardo (1979).

4. Sometimes, an additional causal interpretation is given to the arcs
in S. Namely, an arc from Xi to X j reflects the assertion that Xi is
a direct cause of X j (Spirtes et al. 1993, Pearl 1995).
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