
Selective Greedy Equivalence Search: Finding Optimal Bayesian Networks
Using a Polynomial Number of Score Evaluations

David Maxwell Chickering
Microsoft Research

Redmond, WA 98052
dmax@microsoft.com

Christopher Meek
Microsoft Research

Redmond, WA 98052
meek@microsoft.com

Abstract

We introduce Selective Greedy Equivalence
Search (SGES), a restricted version of Greedy
Equivalence Search (GES). SGES retains the
asymptotic correctness of GES but, unlike GES,
has polynomial performance guarantees. In par-
ticular, we show that when data are sampled in-
dependently from a distribution that is perfect
with respect to a DAG G defined over the ob-
servable variables then, in the limit of large data,
SGES will identify G’s equivalence class after
a number of score evaluations that is (1) poly-
nomial in the number of nodes and (2) expo-
nential in various complexity measures including
maximum-number-of-parents, maximum-clique-
size, and a new measure called v-width that
is at least as small as—and potentially much
smaller than—the other two. More generally,
we show that for any hereditary and equivalence-
invariant property Π known to hold in G, we
retain the large-sample optimality guarantees of
GES even if we ignore any GES deletion oper-
ator during the backward phase that results in a
state for which Π does not hold in the common-
descendants subgraph.

1 INTRODUCTION

Greedy Equivalence Search (GES) is a score-based
search algorithm that searches over equivalence classes
of Bayesian-network structures. The algorithm is appeal-
ing because (1) for finite data, it explicitly (and greedily)
tries to maximize the score of interest, and (2) as the data
grows large, it is guaranteed—under suitable distributional
assumptions—to return the generative structure. Although
empirical results show that the algorithm is efficient in real-
world domains, the number of search states that GES needs
to evaluate in the worst case can be exponential in the num-
ber of domain variables.

In this paper, we show that if we assume the generative dis-
tribution is perfect with respect to some DAG G defined
over the observable variables, and if G is known to be con-
strained by various graph-theoretic measures of complex-
ity, then we can disregard all but a polynomial number of
the backward search operators considered by GES while
retaining the large-sample guarantees of the algorithm; we
call this new variant of GES selective greedy equivalence
search or SGES. Our complexity results are a consequence
of a new understanding of the backward phase of GES,
in which edges (either directed or undirected) are greed-
ily deleted from the current state until a local minimum is
reached. We show that for any hereditary and equivalence-
invariant property known to hold in generative model G,
we can remove from consideration any edge-deletion op-
erator between X and Y for which the property does not
hold in the resulting induced subgraph over X, Y, and their
common descendants. As an example, if we know that each
node has at most k parents, we can remove from consider-
ation any deletion operator that results in a common child
with more than k parents.

We define a new notion of complexity that we call v-width.
For a given generative structure G, v-width is necessarily
smaller than the maximum clique size, which is necessar-
ily smaller than or equal to the maximum number of parents
per node. By casting limited v-width and other complexity
constraints as graph properties, we show how to enumerate
directly over a polynomial number of edge-deletion oper-
ators at each step, and we show that we need only a poly-
nomial number of calls to the scoring function to complete
the algorithm.

The main contributions of this paper are theoretical. Our
definition of the new SGES algorithm deliberately leaves
unspecified the details of how to implement its forward
phase; we prove our results for SGES given any implemen-
tation of this phase that completes with a polynomial num-
ber of calls to the scoring function. A naive implementation
is to immediately return a complete (i.e., no independence)
graph using no calls to the scoring function, but this choice
is unlikely to be reasonable in practice, particularly in dis-



crete domains where the sample complexity of this initial
model will likely be a problem. Whereas we believe it an
important direction, our paper does not explore practical al-
ternatives for the forward phase that have polynomial-time
guarantees.

This paper, which is an expanded version of Chickering and
Meek (2015) and includes all proofs, is organized as fol-
lows. In Section 2, we describe related work. In Section 3,
we provide notation and background material. In Section 4,
we present our new SGES algorithm, we show that it is op-
timal in the large-sample limit, and we provide complexity
bounds when given an equivalence-invariant and hereditary
property that holds on the generative structure. In Section
5, we present a simple synthetic experiment that demon-
strates the value of restricting the backward operators in
SGES. We conclude with a discussion of our results in Sec-
tion 6.

2 RELATED WORK

It is useful to distinguish between approaches to learn-
ing the structure of graphical models as constraint based,
score based or hybrid. Constraint-based approaches typi-
cally use (conditional) independence tests to eliminate po-
tential models, whereas score-based approaches typically
use a penalized likelihood or a marginal likelihood to eval-
uate alternative model structures; hybrid methods combine
these two approaches. Because score-based approaches are
driven by a global likelihood, they are less susceptible than
constraint-based approaches to incorrect categorical deci-
sions about independences.

There are polynomial-time algorithms for learning the best
model in which each node has at most one parent. In
particular, the Chow-Liu algorithm (Chow and Liu, 1968)
used with any equivalence-invariant score will identify
the highest-scoring tree-like model in polynomial time;
for scores that are not equivalence invariant, we can use
the polynomial-time maximum-branching algorithm of Ed-
monds (1967) instead. Gaspers et al. (2012) show how to
learn k-branchings in polynomial time; these models are
polytrees that differ from a branching by a constant k num-
ber of edge deletions.

Without additional assumptions, most results for learning
non-tree-like models are negative. Meek (2001) shows that
finding the maximum-likelihood path is NP-hard, despite
this being a special case of a tree-like model. Dasgupta
(1999) shows that finding the maximum-likelihood poly-
tree (a graph in which each pair of nodes is connected
by at most one path) is NP-hard, even with bounded in-
degree for every node. For general directed acyclic graphs,
Chickering (1996) shows that finding the highest marginal-
likelihood structure under a particular prior is NP-hard,
even when each node has at most two parents. Chicker-
ing at al. (2004) extend this same result to the large-sample

case.

Researchers often assume that the training-data “genera-
tive” distribution is perfect with respect to some model
class in order to reduce the complexity of learning algo-
rithms. Geiger et al. (1990) provide a polynomial-time
constraint-based algorithm for recovering a polytree un-
der the assumption that the generative distribution is per-
fect with respect to a polytree; an analogous score-based
result follows from this paper. The constraint-based PC
algorithm of Sprites et al. (1993) can identify the equiva-
lence class of Bayesian networks in polynomial time if the
generative structure is a DAG model over the observable
variables in which each node has a bounded degree; this
paper provides a similar result for a score-based algorithm.
Kalish and Buhlmann (2007) show that for Gaussian dis-
tributions, the PC algorithm can identify the right structure
even when the number of nodes in the domain is larger than
the sample size. Chickering (2002) uses the same DAG-
perfectness-over-observables assumption to show that the
greedy GES algorithm is optimal in the large-sample limit,
although the branching factor of GES is worst-case expo-
nential; the main result of this paper shows how to limit
this branching factor without losing the large-sample guar-
antee. Chickering and Meek (2002) show that GES iden-
tifies a “minimal” model in the large-sample limit under a
less restrictive set of assumptions.

Hybrid methods for learning DAG models use a constraint-
based algorithm to prune out a large portion of the search
space, and then use a score-based algorithm to select
among the remaining (Friedman et al., 1999; Tsamardinos
et al., 2006). Ordyniak and Szeider (2013) give positive
complexity results for the case when the remaining DAGs
are characterized by a structure with constant treewidth.

Many researchers have turned to exhaustive enumeration
to identify the highest-scoring model (Gillispie and Perl-
man, 2001; Koivisto and Sood 2004; Silander and Myl-
lymäki, 2006; Kojima et al, 2010). There are many com-
plexity results for other model classes. Karger and Sre-
bro (2001) show that finding the optimal Markov net-
work is NP-complete for treewidth > 1. Narasimhan and
Bilmes (2004) and Shahaf, Chechetka and Guestrin (2009)
show how to learn approximate limited-treewidth models in
polynomial time. Abeel, Koller and Ng (2005) show how
to learn factor graphs in polynomial time.

3 NOTATION AND BACKGROUND

We use the following syntactical conventions in this paper.
We denote a variable by an upper case letter (e.g., A) and
a state or value of that variable by the same letter in lower
case (e.g., a). We denote a set of variables by a bold-face
capitalized letter or letters (e.g., X). We use a correspond-
ing bold-face lower-case letter or letters (e.g., x) to denote
an assignment of state or value to each variable in a given



set. We use calligraphic letters (e.g., G, E) to denote statis-
tical models and graphs.

A Bayesian-network model for a set of variables U is a pair
(G,θ). G = (V,E) is a directed acyclic graph—or DAG
for short—consisting of nodes in one-to-one correspon-
dence with the variables and directed edges that connect
those nodes. θ is a set of parameter values that specify all
of the conditional probability distributions. The Bayesian
network represents a joint distribution over U that factors
according to the structure G.

The structure G of a Bayesian network represents the inde-
pendence constraints that must hold in the distribution. The
set of all independence constraints implied by the structure
G can be characterized by the Markov conditions, which
are the constraints that each variable is independent of its
non-descendants given its parents. All other independence
constraints follow from properties of independence. A dis-
tribution defined over the variables from G is perfect with
respect to G if the set of independences in the distribution is
equal to the set of independences implied by the structure
G.

Two DAGs G and G′ are equivalent1—denoted G ≈ G′—if
the independence constraints in the two DAGs are identi-
cal. Because equivalence is reflexive, symmetric, and tran-
sitive, the relation defines a set of equivalence classes over
network structures. We will use [G]≈ to denote the equiva-
lence class of DAGs to which G belongs.

An equivalence class of DAGs F is an independence map
(IMAP) of another equivalence class of DAGs E if all in-
dependence constraints implied by F are also implied by
E . For two DAGs G and H, we use G ≤ H to denote that
[H]≈ is an IMAP of [G]≈; we use G < H when G ≤ H and
[H]≈ 6= [G]≈.

As shown by Verma and Pearl (1991), two DAGs are
equivalent if and only if they have the same skeleton (i.e.,
the graph resulting from ignoring the directionality of the
edges) and the same v-structures (i.e., pairs of edges X →
Y and Y ← Z where X and Z are not adjacent). As
a result, we can use a partially directed acyclic graph—
or PDAG for short—to represent an equivalence class of
DAGs: for a PDAG P , the equivalence class of DAGs is
the set that share the skeleton and v-structures with P2.

We extend our notation for DAG equivalence and the DAG
IMAP relation to include the more general PDAG structure.
In particular, for a PDAG P , we use [P]≈ to denote the
corresponding equivalence class of DAGs. For any pair of
PDAGs P and Q—where one or both may be a DAG—we

1We make the standard conditional-distribution assumptions
of multinomials for discrete variables and Gaussians for contin-
uous variables so that if two DAGs have the same independence
constraints, then they can also model the same set of distributions.

2The definitions for the skeleton and set of v-structures for a
PDAG are the obvious extensions to these definitions for DAGs.

use P ≈ Q to denote [Q]≈ = [P]≈ and we use P ≤ Q to
denote [Q]≈ is an IMAP of [P]≈. To avoid confusion, for
the remainder of the paper we will reserve the symbols G
andH for DAGs.

For any PDAG P and subset of nodes V, we use P[V] to
denote the subgraph of P induced by V; that is, P[V] has
as nodes the set V and has as edges all those from P that
connect nodes in V. We use NAX,Y to denote, within
a PDAG, the set of nodes that are neighbors of X (i.e.,
connected with an undirected edge) and also adjacent to
Y (i.e., without regard to whether the connecting edge is
directed or undirected).

An edge in G is compelled if it exists in every DAG that
is equivalent to G. If an edge in G is not compelled, we
say that it is reversible. A completed PDAG (CPDAG) C
is a PDAG with two additional properties: (1) for every di-
rected edge in C, the corresponding edge in G is compelled
and (2) for every undirected edge in C the corresponding
edge in G is reversible. Unlike non-completed PDAGs, the
CPDAG representation of an equivalence class is unique.
We use PaPY to denote the parents of node Y in P . An
edge X → Y is covered in a DAG if X and Y have the
same parents, with the exception that X is not a parent of
itself.

3.1 Greedy Equivalence Search

Algorithm GES(D)

Input : Data D
Output: CPDAG C
C ←− FES(D)
C ←− BES(D, C)
return C

Figure 1: Pseudo-code for the GES algorithm.

The GES algorithm, shown in Figure 1, performs a two-
phase greedy search through the space of DAG equivalence
classes. GES represents each search state with a CPDAG,
and performs transformation operators to this representa-
tion to traverse between states. Each operator corresponds
to a DAG edge modification, and is scored using a DAG
scoring function that we assume has three properties. First,
we assume the scoring function is score equivalent, which
means that it assigns the same score to equivalent DAGs.
Second, we assume the scoring function is locally consis-
tent, which means that, given enough data, (1) if the cur-
rent state is not an IMAP of G, the score prefers edge ad-
ditions that remove incorrect independences, and (2) if the
current state is an IMAP of G, the score prefers edge dele-
tions that remove incorrect dependences. Finally, we as-
sume the scoring function is decomposable, which means



we can express it as:

Score(G,D) =

n∑
i=1

Score(Xi,PaGi ) (1)

Note that the data D is implicit in the right-hand side Equa-
tion 1. Most commonly used scores in the literature have
these properties. For the remainder of this paper, we as-
sume they hold for the scoring function we use.

All of the CPDAG operators from GES are scored using
differences in the DAG scoring function, and in the limit of
large data, these scores are positive precisely for those op-
erators that remove incorrect independences and incorrect
dependences.

The first phase of the GES—called forward equivalence
search or FES—starts with an empty (i.e., no-edge)
CPDAG and greedily applies GES insert operators until no
operator has a positive score; these operators correspond
precisely to the union of all single-edge additions to all
DAG members of the current (equivalence-class) state. Af-
ter FES reaches a local maximum, GES switches to the sec-
ond phase—called backward equivalence search or BES—
and greedily applies GES delete operators until no operator
has a positive score; these operators correspond precisely to
the union of all single-edge deletions from all DAG mem-
bers of the current state.

Theorem 1. (Chickering, 2002) Let C be the CPDAG that
results from applying the GES algorithm tom records sam-
pled from a distribution that is perfect with respect to DAG
G. Then in the limit of large m, C ≈ G.

The role of FES in the large-sample limit is only to identify
a state C for which G ≤ C; Theorem 1 holds for GES under
any implementation of FES that results in an IMAP of G.
The implementation details can be important in practice be-
cause what constitutes a “large” amount of data depends on
the number of parameters in the model. In theory, however,
we could simply replace FES with a (constant-time) algo-
rithm that sets C to be the no-independence equivalence
class.

The focus of our analysis in the next section is on a mod-
ified version of BES, and the details of the delete operator
used in this phase are important. We detail the precondi-
tions, scoring function, and transformation algorithm for a
delete operator in Figure 2. We note that we do not need to
make any CPDAG transformations when scoring the oper-
ators; it is only once we have identified the highest-scoring
(non-negative) delete that we need to make the transforma-
tion shown in the figure. After applying the edge modifi-
cations described in the foreach loop, the resulting PDAG
P is not necessarily completed and hence we may have to
convert P into the corresponding CPDAG representation.
As shown by Chickering (2002), this conversion can be ac-
complished easily by using the structure of P to extract a

Operator: Delete(X,Y,H) applied to C

• Preconditions

X and Y are adjacent
H ⊆ NAY,X

H = NAY,X \H is a clique

• Scoring
Score(Y, {PaCY ∪H}\X)−Score(Y,X ∪PaCY ∪H)

• Transformation

Remove edge between X and Y
foreach H ∈ H do

Replace Y −H with Y → H
if X −H then Replace with X → H;

end
Convert to CPDAG

Figure 2: Preconditions, scoring, and transformation algo-
rithm for a delete operator applied to a CPDAG.

DAG that we then convert into a CPDAG by undirecting all
reversible edges. The complexity of this procedure for a P
with n nodes and e edges is O(n · e), and requires no calls
to the scoring function.

4 SELECTIVE GREEDY EQUIVALENCE
SEARCH

In this section, we define a variant of the GES algorithm
called selective GES—or SGES for short—that uses a sub-
set of the GES operators. The subset is chosen based on a
given property Π that is known to hold for the generative
structure G. Just like GES, SGES—shown in Figure 3—has
a forward phase and a backward phase.

For the forward phase of SGES, it suffices for our theoret-
ical analysis that we use a method that returns an IMAP of
G (in the large-sample limit) using only a polynomial num-
ber of insert-operator score calls. For this reason, we call
this phase poly-FES. A simple implementation of poly-FES
is to return the no-independence CPDAG (with no score
calls), but other implementations are likely more useful in
practice.

The backward phase of SGES—which we call selective
backward equivalence search (SBES)—uses only a subset
of the BES delete operators. This subset must necessarily
include all Π-consistent delete operators—defined below—
in order to maintain the large-sample consistency of GES,
but the subset can (and will) include additional operators
for the sake of efficient enumeration.

The DAG properties used by SGES must be equivalence
invariant, meaning that for any pair of equivalent DAGs,



either the property holds for both of them or it holds for
neither of them. Thus, for any equivalence-invariant DAG
property Π, it makes sense to say that Π either holds or
does not hold for a PDAG. As shown by Chickering (1995),
a DAG property is equivalence invariant if and only if it is
invariant to covered-edge reversals; it follows that the prop-
erty that each node has at most k parents is equivalence in-
variant, whereas the property that the length of the longest
directed path is at least k is not. Furthermore, the proper-
ties for SGES must also be hereditary, which means that
if Π holds for a PDAG P it must also hold for all induced
subgraphs of P . For example, the max-parent property is
hereditary, whereas the property that each node has at least
k parents is not. We use EIH property to refer to a property
that is equivalence invariant and hereditary.

Definition 1. Π-Consistent GES Delete
A GES delete operatorDelete(X,Y,H) is Π consistent for
CPDAG C if, for the set of common descendants W of X
and Y in the resulting CPDAG C′, the property holds for
the induced subgraph C′[X ∪ Y ∪W].

In other words, after the delete, the property holds for the
subgraph defined byX , Y , and their common descendants.

Algorithm SGES(D,Π)

Input : Data D, Property Π
Output: CPDAG C
C ←− poly-FES
C ←− SBES(D, C, Π)
return C

Figure 3: Pseudo-code for the SGES algorithm.

Algorithm SBES(D, C,Π)

Input : Data D, CPDAG C, Property Π
Output: CPDAG

Repeat
Ops←− Generate Π-consistent delete operators for C
Op←− highest-scoring operator in Ops
if score of Op is negative then return C
C ←− Apply Op to C

Figure 4: Pseudo-code for the SBES algorithm.

4.1 LARGE-SAMPLE CORRECTNESS

The following theorem establishes a graph-theoretic justi-
fication for considering only the Π-consistent deletions at
each step of SBES.

Theorem 2. If G < C for CPDAG C and DAG G, then
for any EIH property Π that holds on G, there exists a Π-

consistent Delete(X,Y,H) that when applied to C results
in the CPDAG C′ for which G ≤ C′.

We postpone the proof of Theorem 2 to the appendix. The
result is a consequence of an explicit characterization of,
for a given pair of DAGs G and H such that G < H, an
edge in H that we can either reverse or delete in H such
that for the resulting DAGH′, we have G ≤ H′3.

Theorem 3. Let C be the CPDAG that results from apply-
ing the SGES algorithm to (1) m records sampled from a
distribution that is perfect with respect to DAG G and (2)
EIH property Π that holds on G. Then in the limit of large
m, C ≈ G.

Proof: Because the scoring function is locally consistent,
we know poly-FES must return an IMAP of G. Because
SBES includes all the Π-consistent delete operators, The-
orem 2 guarantees that, unless C ≈ G, there will be a
positive-scoring operator.

4.2 COMPLEXITY MEASURES

In this section, we discuss a number of distributional as-
sumptions that we can use with Theorem 3 to limit the num-
ber of operators that SGES needs to score. As discussed in
Section 2, when we assume the generative distribution is
perfect with respect to a DAG G, then graph-theoretic as-
sumptions about G can lead to more efficient training algo-
rithms. Common assumptions used include (1) a maximum
parent-set size for any node, (2) a maximum-clique4 size
among any nodes and (3) a maximum treewidth. Treewidth
is important because the complexity of exact inference is
exponential in this measure.

We can associate a property with each of these assumptions
that holds precisely when the DAG G satisfies that assump-
tion. Consider the constraint that the maximum number of
parents for any node in G is some constant k. Then, us-
ing “PS” to denote parent size, we can define the property
Πk

PS to be true precisely for those DAGs in which each
node has at most k parents. Similarly we can define Πk

CL

and Πk
TW to correspond to maximum-clique size and max-

imum treewidth, respectively.

For two properties Π and Π′, we write Π ⊆ Π′ if for every
DAG G for which Π holds, Π′ also holds. In other words,
Π is a more constraining property than is Π′. Because the
lowest node in any clique has all other nodes in the clique
as parents, it is easy to see that Πk

PS ⊆ Πk−1
CL . Because the

treewidth for DAG G is defined to be the size of the largest
clique minus one in a graph whose cliques are at least as
large as those in G, we also have Πk

TW ⊆ Πk−1
CL . Which

3Chickering (2002) characterizes the reverse transformation of
reversals/additions in G, which provides an implicit characteriza-
tion of reversals/deletions in H.

4We use clique in a DAG to mean a set of nodes in which all
pairs are adjacent.



property to use will typically be a trade-off between how
reasonable the assumption is (i.e, less constraining proper-
ties are more reasonable) and the efficiency of the resulting
algorithm (i.e., more constraining properties lead to faster
algorithms).

We now consider a new complexity measure called v-width,
whose corresponding property is less constraining than the
previous three, and somewhat remarkably leads to an effi-
cient implementation in SGES. For a DAG G, the v-width
is defined to be the maximum of, over all pairs of non-
adjacent nodes X and Y , the size of the largest clique
among common children of X and Y . In other words,
v-width is similar to the maximum-clique-size bound, ex-
cept that the bound only applies to cliques of nodes that are
shared children of some pair of non-adjacent nodes. With
this understanding it is easy to see that, for the property
Πk

VW corresponding to a bound on the v-width, we have
Πk

CL ⊆ Πk
VW .

To illustrate the difference between v-width and the other
complexity measures, consider the two DAGs in Figure 5.
The DAG in Figure 5(a) has a clique of size K, and con-
sequently a maximum-clique size of K and a maximum
parent-set size of K − 1. Thus, if K is O(n) for a large
graph of n nodes, any algorithm that is exponential in these
measures will not be efficient. The v-width, however, is
zero for this DAG. The DAG in Figure 5(b), on the other
hand, has a v-width of K.

(a)

X1

A B

X2
X3

X4

XK
X1

A B

X2
X3

X4

XK

(b)

Figure 5: Two DAGs (a) and (b) having identical maximum
clique sizes, similar maximum number of parents, and di-
vergent v-widths.

In order to use a property with SGES, we need to estab-
lish that it is EIH. For Πk

PS , Πk
CL and Πk

VW , equivalence-
invariance follows from the fact that all three properties are
covered-edge invariant, and hereditary follows because the
corresponding measures cannot increase when we remove
nodes and edges from a DAG. Although we can estab-
lish EIH for the treewidth property Πk

TW with more work,
we omit further consideration of treewidth for the sake of
space.

4.3 GENERATING DELETIONS

In this section, we show how to generate a set of dele-
tion operators for SBES such that all Π-consistent deletion
operators are included, for any Π ∈ {Πk

PS ,Π
k
CL,Π

k
VW }.

Furthermore, the total number of deletion operators we
generate is polynomial in the number of nodes in the do-
main and exponential in k.

Our approach is to restrict the Delete(X,Y,H) operators
based on the H sets and the resulting CPDAG C′. In par-
ticular, we rule out candidate H sets for which Π does
not hold on the induced subgraph C′[H ∪X ∪ Y ]; because
all nodes in H will be common children of X and Y in
C′—and thus a subset of the common descendants of X
and Y—we know from Definition 1 (and the fact that Π is
hereditary) that none of the dropped operators can be Π-
consistent.

Before presenting our restricted-enumeration algorithm,
we now discuss how to enumerate delete operators with-
out restrictions. As shown by Andersson et al. (1997), a
CPDAG is a chain graph whose undirected components are
chordal. This means that the induced sub-graph defined
over NAY,X—which is a subset of the neighbors of Y—is
an undirected chordal graph. A useful property of chordal
graphs is that we can identify, in polynomial time, a set of
maximal cliques over these nodes5; let C1, ...,Cm denote
the nodes contained within these m maximal cliques, and
let H = NAY,X \ H be the complement of the shared
neighbors with respect to the candidate H. Recall from
Figure 2 that the preconditions for any Delete(X,Y,H)
include the requirement that H is a clique. This means that
for any valid H, there must be some maximal clique Ci that
contains the entirety of H; thus, we can generate all oper-
ators (without regard to any property) by stepping through
each maximal clique Ci in turn, initializing H to be all
nodes not in Ci, and then generating a new operator cor-
responding to expanding H by all subsets of nodes in Ci.
Note that if NAY,X is itself a clique, we are enumerating
over all 2|NAY,X | operators.

As we show below, all three of the properties of interest
impose a bound on the maximum clique size among nodes
in H. If we are given such a bound s, we know that any
“expansion” subset for a clique that has size greater than
s will result in an operator that is not valid. Thus, we can
implement the above operator-enumeration approach more
efficiently by only generating subsets within each clique
that have size at most s. This allows us to process each
clique Ci with only O(|Ci + 1|s) calls to the scoring func-
tion. In addition, we need not enumerate over any of the
subsets of Ci if, after removing this clique from the graph,
there remains a clique of size greater than s; we define the

5Blair and Peyton (1993) provide a good survey on chordal
graphs and detail how to identify the maximal cliques while run-
ning maximum-cardinality search.



Algorithm SELECTIVE-GENERATE-OPS(C, X, Y, s)

Input : CPDAG C with adjacent X ,Y and limit s
Output: Ops = {H1, . . . ,Hm}

Ops←− ∅
Generate maximal cliques C1, ...,Cm from NAY,X

S←− FiltertCliques({C1, . . . ,Cm}, s)
foreach Ci ∈ S do

H0 ←− NAY,X \Ci

foreach C ⊆ Ci with |C| ≤ s do
Add H0 ∪C to Ops

end
end
return Ops

Figure 6: Algorithm to generate clique-size limited delete
operators.

function FilterCliques({C1, . . . ,Cm}, s) to be the sub-
set of cliques that remain after imposing this constraint.
With this function, we can define SELECTIVE-GENERATE-
OPS as shown in Figure 6 to leverage the max-clique-size
constraint when generating operators; this algorithm will in
turn be used to generate all of the CPDAG operators during
SBES.

Example: In Figure 7, we show an example CPDAG for
which to run SELECTIVE-GENERATE-OPS(C, X , Y , s) for
various values of s. In the example, there is a single clique
C = {A,B} in the set NAY,X , and thus at the top of the
outer foreach loop, the set H0 is initialized to the empty
set. If s = 0, the only subset of C with size zero is the
empty set, and so that is added to Ops and the algorithm
returns. If s = 1 we add, in addition to the empty set, all
singleton subsets of C. For s ≥ 2, we add all subsets of
C.

Now we discuss how each of the three properties impose a
constraint s on the maximum clique among nodes in H, and
consequently the selective-generation algorithm in Figure 6
can be used with each one, given an appropriate bound s.
For both Πk

VW and Πk
CL, the k given imposes an explicit

bound on s (i.e., s = k for both). Because any clique in
H of size r will result in a DAG member of the resulting
equivalence class having a node in that clique with at least
r+ 1 parents (i.e., r− 1 from the other nodes in the clique,
plus both X and Y ), we have for Πk

PS , s = k − 1.

We summarize the discussion above in the following
proposition.

Proposition 1. Algorithm SELECTIVE-GENERATE-OPS
applied to all edges using clique-size bound s gen-
erates all Π-consistent delete operators for Π ∈
{Πs+1

PS ,Π
s
CL,Π

s
VW }.

We now argue that running SBES on a domain of n vari-
ables when using Algorithm SELECTIVE-GENERATE-OPS
with a bound s requires only a polynomial number in n of
calls to the scoring function. Each clique in the inner loop
of the algorithm can contain at most n nodes, and therefore
we generate and score at most (n+1)s operators, requiring
at most 2(n + 1)s calls to the scoring function. Because
the cliques are maximal, there can be at most n of them
considered in the outer loop. Because there are never more
than n2 edges in a CPDAG, and we will delete at most all
of them, we conclude that even if we decided to rescore ev-
ery operator after every edge deletion, we will only make a
polynomial number of calls to the scoring function.

From the above discussion and the fact that SBES com-
pletes using at most a polynomial number of calls to the
scoring function, we get the following result for the full
SGES algorithm.

Proposition 2. The SGES algorithm, when run over a do-
main of n variables and given Π ∈ {Πs+1

PS ,Π
s
CL,Π

s
VW },

runs to completion using a number of calls to the DAG
scoring function that is polynomial in n and exponential
in s.

A B

X Y
s=0 Ops={ {} }
s=1 Ops={ {}, {A}, {B} }
s=2 Ops={ {} ,{A}, {B}, {A,B} }

Figure 7: An example CPDAG C and the resulting opera-
tors generated by SELECTIVE-GENERATE-OPS(C,X ,Y ,s)
for various values of s.

5 EXPERIMENTS

In this section, we present a simple synthetic experiment
comparing SBES and BES that demonstrates the value of
pruning operators. In our experiment we used an oracle
scoring function. In particular, given a generative model G,
our scoring function computes the minimum-description-
length score assuming a data size of five billion records,
but without actually sampling any data: instead, we use
exact inference in G (i.e., instead of counting from data)
to compute the conditional probabilities needed to compute
the expected log loss. This allows us to get near-asymptotic
behavior without the need to sample data. To evaluate the
cost of running each algorithm, we counted the number of
times the scoring function was called on a unique node and
parent-set combination; we cached these scores away so
that if they were needed multiple times during a run of the
algorithm, they were only computed (and counted) once.



In Figure 8, we show the average number of scoring-
function calls required to complete BES and SBES when
starting from a complete graph over a domain of n bi-
nary variables, for varying values of n. Each average is
taken over ten trials, corresponding to ten random genera-
tive models. All variables in the domain were binary. We
generated the structure of each generative model as follows.
First, we enumerated all node pairs by randomly permuting
the nodes and taking each node in turn with all of its pre-
decessors in turn. For each node pair in turn, we chose to
attempt an edge insertion with probability one half. For
each attempt, we added an edge if doing so (1) did not cre-
ate a cycle and (2) did not result in a node having more
than two parents; if an edge could be added in either di-
rection, we chose the direction at random. We sampled
the conditional distributions for each node and each par-
ent configuration from a uniform Dirichlet distribution with
equivalent-sample size of one. We ran SBES with Π2

PS .

0

5000

10000

15000

20000

25000

5 6 7 8 9 10 11 12

Sc
o

re
 E

vl
au

at
io

n
s

Number of Nodes

BES

SBES

Figure 8: Number of score evaluations needed to run BES
and SBES, starting from the complete graph, for a range of
domain sizes.

Our results show clearly the exponential dependence of
BES on the number of nodes in the clique, and the increas-
ing savings we get with SBES, leveraging the fact that Π2

PS

holds in the generative structure.

Note that to realize large savings in practice, when GES
runs FES instead of starting from a dense graph, a (rel-
atively sparse) generative distribution must lead FES to an
equivalence class containing a (relatively dense) undirected
clique that is subsequently “thinned” during BES. We can
synthesize challenging grid distributions to force FES into
such states, but it is not clear how realistic such distribu-
tions are in practice. When we re-run the clique experi-
ment above, but where we instead start both BES and SBES
from the model that results from running FES (i.e., with
no polynomial-time guarantee), the savings from SBES are

small due to the fact that the subsequent equivalence classes
do not contain large cliques.

6 CONCLUSION

Through our selective greedy equivalence search algo-
rithm SGES, we have demonstrated how to leverage
graph-theoretic properties to reduce the need to score
graphs during score-based search over equivalence classes
of Bayesian networks. Furthermore, we have shown
that for graph-theoretic complexity properties including
maximum-clique size, maximum number of parents, and
v-width, we can guarantee that the number of score evalua-
tions is polynomial in the number of nodes and exponential
in these complexity measures.

The fact that we can use our approach to selectively
choose operators for any hereditary and equivalence in-
variant graph-theoretic property provides the opportunity
to explore alternative complexity measures. Another can-
didate complexity measure is the maximum number of v-
structures. Although the corresponding property does not
limit the maximum size of a clique in H, it limits directly
the size |H| for every operator. Thus it would be easy to
enumerate these operators efficiently. Another complexity
measure of interest is treewidth, due to the fact that exact
inference in a Bayesian-network model is takes time expo-
nential in this measure.

The results we have presented are for the general Bayesian-
network learning problem. It is interesting to consider the
implications of our results for the problem of learning par-
ticular subsets of Bayesian networks. One natural class that
we discussed in Section 2 is that of polytrees. If we assume
that the generative distribution is perfect with respect to a
polytree then we know the v-width of the generative graph
is one. This implies, in the limit of large data, that we can
recover the structure of the generative graph with a poly-
nomial number of score evaluations. This provides a score-
based recovery algorithm analogous to the constraint-based
approach of Geiger et al. (1990).

We presented a simple complexity analysis for the purpose
of demonstrating that SGES uses a only polynomial num-
ber of calls to the scoring function. We leave as future work
a more careful analysis that establishes useful constants in
this polynomial. In particular, we can derive tighter bounds
on the total number of node-and-parent-configurations that
are needed to score all the operators for each CPDAG, and
by caching these configuration scores we can further take
advantage of the fact that most operators remain valid (i.e.,
the preconditions still hold) and have the same score after
each transformation.

Finally, we plan to investigate practical implementations of
poly-FES that have the polynomial-time guarantees needed
for SGES.



Appendices

In the following two appendices, we prove Theorem 2.

A Additional Background

In this section, we introduce additional background mate-
rial needed for the proofs.

A.1 Additional Notation

To express sets of variables more compactly, we often use
a comma to denote set union (e.g., we write X = Y,Z as a
more compact version of X = Y ∪Z). We also will some-
times remove the comma (e.g., YZ). When a set consists
of a singleton variable, we often use the variable name as
shorthand for the set containing that variable (e.g., we write
X = Y \ Z as shorthand for X = Y \ {Z}).

We say a nodeN is a descendant of Y ifN = Y or there is
a directed path from Y toN . We useH-descendant to refer
to a descendant in a particular DAG H. We say a node N
is a proper descendant of Y if N is a descendant of Y and
N 6= Y . We use NonDeHY to denote the non-descendants
of node Y in G. We use PaHY ↓X1X2...Xn

as shorthand for
PaHY \ {X1, . . . , Xn}. For example, to denote all the par-
ents of Z inH except for X and Y , we use PaHZ↓XY .

A.2 D-separation and Acvite Paths

The independence constraints implied by a DAG structure
are characterized by the d-separation criterion. Two nodes
A and B are said to be d-separated in a DAG G given a
set of nodes S if and only if there is no active path in G
between A and B given S. The standard definition of an
active path is a simple path for which each node W along
the path either (1) has converging arrows (i.e., → W ←)
and W or a descendant of W is in S or (2) does not have
converging arrows and W is not in S. By simple, we mean
that the path never passes through the same node twice.

To simplify our proofs, we use an equivalent definition of
an active path—that need not be simple—where each node
W along the path either (1) has converging arrows andW is
in S or (2) does not have converging arrows andW is not in
S. In other words, instead of allowing a segment→ W ←
to be included in a path by virtue of a descendant of W be-
longing to S, we require that the path include the sequence
of edges from W to that descendant and then back again.
For those readers familiar with the celebrated “Bayes ball”
algorithm of Shachter (1998) for testing d-separation, our
expanded definition of an active path is simply a valid path
that the ball can take between A and B.

We use X⊥⊥GY|Z to denote the assertion that DAG G im-
poses the constraint that variables X are independent of
variables Y given variables Z.When a nodeW along a path

has converging arrows, we say that W is a collider at that
position in the path.

The direction of each terminal edge in an active path—that
is, the first and last edge encountered in a traversal from one
end of the path to the other—is important for determining
whether we can append two active paths together to make
a third active path. We say that a path π(A,B) is into A if
the terminal edge incident to A is oriented toward A (i.e.,
A ←). Similarly, the path is into B if the terminal edge
incident to B is oriented toward B. If a path is not into
an endpoint A, we say that the path is out of A. Using the
following result from Chickering (2002), we can combine
active paths together.

Lemma 1. (Chickering, 2002) Let π(A,B) be an S-active
path between A and B, and let π(B,C) be an S-active
path between B and C. If either path is out of B, then the
concatenation of π(A,B) and π(B,C) is an S-active path
between A and C.

Given a DAG H that is an IMAP of DAG G, we use the
d-separation criterion in two general ways in our proofs.
First, we identify d-separation facts that hold inH and con-
clude that they must also hold in G. Second, we identify
active paths in G and conclude that there must be corre-
sponding active paths inH.

A.3 Independence Axioms

In many of our proofs, we would like to reason about the
independence facts that hold in DAG G without knowing
what its structure is, which makes using the d-separation
criterion problematic. As described in Pearl (1988), any
set of independence facts characterized by the d-separation
criterion also respect the independence axioms shown in
Figure 9. These axioms allow us to take a set of indepen-
dence facts in some unknown G (e.g., that are implied by
d-separation inH), and derive new independence facts that
we know must also hold in G.

Throughout the proofs, we will often use the Symmetry
axiom implicitly. For example, if we have A⊥⊥B,C|D we
might claim that B⊥⊥A|C,D follows from Weak Union,
as opposed to concluding A⊥⊥B|C,D from Weak Union
and then applying Symmetry. We will frequently identify
independence constraints in H and conclude that they
hold in G, without explicitly justifying this with because
G ≤ H. For example, we will say:

Because A is a non-descendant of B in H, it follows from
the Markov conditions that A⊥⊥GB|PaHB .

In other words, to be explicit we would say that
A⊥⊥HB|PaHB follows from the Markov conditions, and
the independence holds in G because G ≤ H.



Symmetry: X⊥⊥Y|Z ⇐⇒ Y⊥⊥X|Z
Decomposition: X⊥⊥Y,W|Z =⇒ X⊥⊥Y|Z + X⊥⊥W|Z
Composition: X⊥⊥Y|Z + X⊥⊥W|Z =⇒ X⊥⊥Y,W|Z
Intersection: X⊥⊥Y|Z,W + X⊥⊥W|Z,Y =⇒ X⊥⊥Y,W|Z
Weak Union: X⊥⊥Y,W|Z =⇒ X⊥⊥Y|Z,W
Contraction: X⊥⊥W|Z,Y + X⊥⊥Y|Z ⇐= X⊥⊥Y,W|Z
Weak Transitivity: X⊥⊥Y|Z + X⊥⊥Y|Z, T =⇒ X⊥⊥T |Z OR Y⊥⊥T |Z

Figure 9: The DAG-perfect independence axioms.

The Composition axiom states that if X is independent of
both Y and W individually given Z, then X is independent
of them jointly. If we have more than two such sets that are
independent of X, we can apply the Composition axiom re-
peatedly to combine them all together. To simplify, we will
do this combination implicitly, and assume that the Compo-
sition axiom is defined more generally. Thus, for example,
we might have:

Because X⊥⊥Y |Z for every Y ∈ Y, we conclude by the
Composition axiom that X⊥⊥Y|Z.

B Proofs

In this section, we provide a number of intermediate results
that lead to a proof of Theorem 2.

B.1 Intermediate Result: “The Deletion Lemma”

Given DAGs G and H for which G < H, we say that an
edge e from H is deletable in H with respect to G if, for
the DAGH′ that results after removing e fromH, we have
G ≤ H. We will say that an edge is deletable in H or
simply deletable if G or both DAGs, respectively, are clear
from context. The following lemma establishes necessary
and sufficient conditions for an edge to be deletable.
Lemma 2. Let G and H be two DAGs such that G ≤ H.
An edge X → Y is deletable in H with respect to G if and
only if Y⊥⊥GX|PaHY \X .

Proof: Let H′ be the DAG resulting from removing the
edge. The “only if” follows immediately because the given
independence is implied by H′. For the “if”, we show that
for every nodeA and every nodeB ∈ NonDeH

′

A , the inde-
pendence A⊥⊥GB|PaH

′

A holds (in G). We need only con-
sider (A,B) pairs for whichB is a descendant inH but not
inH′; if the “descendant” relationship has not changed, we
know the independence holds by virtue of G ≤ H and the
fact that deleting an edge results in strictly more indepen-
dence constraints.

The proof follows by induction on the length of the longest
directed path in H′ from Y to B. For the base case (see
Figure 10a and Figure 10b), we start with a longest path
of length zero; in other words, B = Y . Because A is an

ancestor of Y in H, both it and its parents must be non-
descendants of Y in H, and therefore the Markov condi-
tions inH imply

Y⊥⊥GA,PaHA |PaHY (2)

Given the independence fact assumed in the lemma, we can
apply the Contraction axiom to remove X from the condi-
tioning set in (2), and then apply the Weak Union axiom to
move PaHA into the conditioning set to conclude

Y⊥⊥GA|PaHY \X,PaHA (3)

Neither Y nor its new parents PaHY \X can be descendants
ofA inH′, elseB would remain a descendant ofA after the
deletion, and thus we conclude by the Markov conditions
inH that

A⊥⊥GPaHY \X|PaHA (4)

Applying the Contraction axiom to (3) and (4), we have

A⊥⊥GY |PaHA

and because PaH
′

A = PaHA the lemma follows.

For the induction step (see Figure 10c and Figure 10d), we
assume the lemma holds for all nodes whose longest path
from Y is ≤ k, and we consider a B for which the longest
path from Y is k + 1. Consider any parent P of node B.
If P is a descendant of Y , the longest path from Y to B
must be ≤ k, else we have a path to B that is longer than
k + 1. If P is not a descendant of Y , then P is also not a
descendant of A in H, else B would be a descendant of A
inH′. Thus, for every parent P , we conclude

A⊥⊥GP |PaHA

either by the induction hypothesis or by the fact that P is a
non-descendant of A in H. From the Composition axiom
we can combine these individual parents together, yielding

A⊥⊥GPaHB |PaHA (5)

Because B is a descendant of A inH, we know that A and
all of its parents PaHA are non-descendants of B in H, and
thus

B⊥⊥GA,PaHA |PaHB (6)



 
 

(c)

  
 

(d)

X

Y

P1 Pn

B

k+1

A

PaA

X

Y

P1 Pn

B

A

PaA

X

Y=B

PaY  X

A

PaA

X

Y=B

PaY  X

A

PaA

 
 

(a)

  
 

(b)

PaB PaB

Figure 10: Relevant portions ofH andH′ for the inductive proof of Lemma 2: (a) and (b) are for the basis and (c) and (d)
are for the induction hypothesis.

Applying the Weak Union axiom to (6) yields

B⊥⊥GA|PaHA ,PaHB (7)

and finally applying the Contraction axiom to (5) and (7)
yields

A⊥⊥GB|PaHA

Because the parents of A are the same in both H and H′,
the lemma follows.

B.2 Intermediate Result: “The Deletion Theorem”

We define the pruned variables for G and H—denoted
Prune(G,H)– to be the subset of the variables that remain
after we repeatedly remove from both graphs any common
sink nodes (i.e., nodes with no children) with the same par-
ents in both graphs. For V = Prune(G,H), let V de-
note the complement of V. Note that every node in V has
the same parents and children in both G and H, and that
G[V] = H[V].

We use G-leaf to denote any node in G that has no children.
For any G-leaf L, we say that L is anH-lowest G-leaf if no
proper descendant of L in H is a G-leaf . Note that we are
discussing two DAGs in this case: L is a leaf in G, and out
of all nodes that are leaves in G, L is the one that is lowest
in the other DAG H. To avoid ambiguity, we often prefix
other common graph concepts (e.g., G-child andH-parent)
to emphasize the specific DAG to which we are referring.

We need the following result from Chickering (2002).

Lemma 3. (Chickering, 2002) Let G andH be two DAGs
containing a node Y that is a sink in both DAGs and for
which PaGY = PaHY . Let G′ and H′ denote the subgraphs
of G and H, respectively, that result by removing node Y
and all its in-coming edges. Then G ≤ H if and only if
G′ ≤ H′.

By repeatedly applying Lemma 3, the following corollary
follows immediately.

Corollary 1. Let V = Prune(G,H). Then G ≤ H if and
only if GV ≤ HV.

We now present the “deletion theorem”, which is the basis
for Theorem 2.

Theorem 4. Let G and H be DAGs for which G ≤ H, let
V = Prune(G,H), and let L be any H[V]-lowest G[V]-
leaf. Then,

1. If L does not have any H[V]-children, then for every
D ∈ V that is an H[V]-parent of L but not a G[V]-
parent of L, D → L is deletable inH.

2. If L has at least one H[V]-child, let A be any H[V]-
highest child; one of the following three properties
must hold inH:

(a) L→ A is covered.



(b) There exists an edge A← B, where L and B are
not adjacent, and either L → A or A ← B (or
both) are deletable.

(c) There exists an edgeD → L, whereD andA are
not adjacent, and either D → L or L → A (or
both) are deletable.

Proof: As a consequence of Corollary 1, the lemma holds
if and only if it holds for any graphs G and H for which
there are no nodes that are sinks in both graphs with the
same parents; in other words, G = GV and H = HV.
Thus, to vastly simplify the notation for the remainder of
the proof, we will assume that this is the case, and therefore
L is a leaf node in G, A is a highest child of L in H, and
the restriction of B and D to V is vacuous.

For case (1), we know that PaGL ⊆ PaHL , else there would
be some edge in X → L in G for which X and L are not
adjacent in H, contradicting G ≤ H. Because L is a leaf
in G, all non-parents must also be non-descendants, and
hence L⊥⊥GX|PaGL for all X . It follows that for every
D ∈ {PaHL \PaGL}, D → Y is deletable inH. There must
exist such a D, else L would be in V = Prune(G,H).

For case (2), we now show that at least one of the properties
must hold. Assume that the first property does not hold,
and demonstrate that one of the other two properties must
hold. If the first property does not hold then we know that
in H either there exists an edge A ← B where B is not a
parent of L, or there exists an edge D → L where D is not
a parent of A. Thus the pre-conditions of at least one of the
remaining two properties must hold.

SupposeH contains the edgeA← B whereB is not a par-
ent of L. Then we conclude immediately from Corollary 2
that either L→ A or A← B is deletable inH.

SupposeH contains the edgeD → L whereD is not a par-
ent of A. Then the set D containing all parents of L that
are not parents of A is non-empty. Let R = PaHA ∩ PaHL
be the shared parents of L and A, and let T = PaH

A↓RL

be the remaining non-L parents of A inH, so that we have
PaHA = L,R,T and PaHL = R,D. Because no node in
D is a child or a descendant of A, lest H contains a cy-
cle, we know that H contains the following independence
constraint that must hold in G:

A⊥⊥GD|L,R,T (8)

Because L is a leaf node in G, it is impossible to create a
new active path by removing it from the conditioning set,
and hence we also know

A⊥⊥GD|R,T (9)

Applying the Weak Transitivity axiom to Independence 8
and Independence 9, we conclude either A⊥⊥GL|R,T—
in which case L→ A is deletable–or

L⊥⊥GD|R,T (10)

We know that no node in T can be a descendant of L, or
else A would not be the highest child of L. Thus, because
L is independent of any non-descendants given its parents
we have

L⊥⊥GT|R,D (11)

Applying the Intersection axiom to Independence 10 and
Independence 11, we have

L⊥⊥GD|R (12)

In other words, L is independent of all of the nodes in D
given the other parents. By applying the Weak Union ax-
iom, we can pull all but one of the nodes in D into the
conditioning set to obtain

L⊥⊥GD|R, {D \D} (13)

and hence D → L is deletable for each such D.

B.3 Intermediate Result: “Add A Singleton
Descendant to the Conditioning Set”

The intuition behind the following lemma is that if L is
an H-lowest G-leaf , no v-structure below L in H can be
“real” in terms of the dependences in G: for any Y below L
that is independent of some other node X , they remain in-
dependent when we condition on any singleton descendant
Z of Y , even if Z is also a descendant of X . The lemma
is stated in a somewhat complicated manner because we
want to use it both when (1) X and Y are adjacent but the
edge is known to be deletable and (2) X and Y are not ad-
jacent. We also find it convenient to include, in addition
to Y ’s non-X parents, an arbitrary additional set of non-
descendants S.

Lemma 4. Let Y be any H-descendant of an H-lowest
G-leaf . If

Y⊥⊥GX|PaHY ↓X ,S

for {X,S} ⊆ NonDeHY , then Y⊥⊥GX|PaHY ↓X ,S, Z for
any properH-descendant Z of Y .

Proof: To simplify notation, let R = PaHY ↓X ,S. Assume
the lemma does not hold and thus Y 6⊥⊥GX|R, Z. Consider
any (R, Z)-active path πXY between X and Y in G. Be-
cause Y⊥⊥GX|R, this path cannot be active without Z in
the conditioning set, which means that Z must be on the
path, and it must be a collider in every position it occurs.
Without loss of generality, assumeZ occurs exactly once as
a collider along the path (we can simply delete the sub-path
between the first and last occurrence of Z, and the resulting
path will remain active), and let πXZ be the sub-path from
X to Z along πXY , and let πZY be the sub-path from Z to
Y along πXY .

Because Z is a proper descendant of Y in H, and Y is a
descendant of an H-lowest G-leaf , we know Z cannot be
a G-leaf , else it would be lower than L in H. That means



that in G, there is a directed path πZL′ = Z → . . . → L′

consisting of at least one edge from Z to some G-leaf . No
node T along this path can be in R, else we could splice
in the path Z → . . . → T ← . . . ← Z between πXZ

and πZY , and the resulting path would remain active with-
out Z in the conditioning set. Note that this means that L′

cannot belong to PaHY ↓X ⊆ R. Similarly, the path cannot
reach X or Y , else we could combine this out-of-Z path
with πZY or πXZ , respectively, to again find an R-active
path between X and Y . We know that in H, L′ must be
a non-descendant of Y , else L′ would be a lower G-leaf
than L in H. Because X ∪ R contains all of Y ’s parents
and none of its descendants, and because (as we noted) L′

cannot be inX∪R, we knowH contains the independence
Y⊥⊥HL′|X,R. But we just argued that the (directed) path
πZL′ in G does not pass through any of X,Y,R, which
means that it constitutes an out-of Z (R, X)-active path
that can be combined with πZY to produce a (R, X)-active
path between Z and L′, yielding a contradiction.

B.4 Intermediate Result: The “Weak-Transitivity
Deletion” Lemma

The next lemma considers a collider X → Z ← Y in
H where either there is no edge between X and Y (i.e.,
the collider is a v-structure) or the edge is deletable. The
lemma states that if X and Y remain independent when
conditioning on their common child—where all the non-
{X,Y, Z} parents of all three nodes are also in the condi-
tioning set—then one of the two edges must be deletable.

Lemma 5. Let X → Z and Y → Z be two
edges in H. If X⊥⊥GY |PaHX↓Y ,PaHY ↓X ,PaHZ↓XY and
X⊥⊥GY |PaHX↓Y ,PaHY ↓X ,PaHZ↓XY , Z (i.e., Z added to
the conditioning set), then at least one of the following must
hold: Z⊥⊥GX|PaHZ↓X or Z⊥⊥GY |PaHZ↓Y .

Proof: Let S = {PaHX↓Y ,PaHY ↓X}\PaHZ↓XY be the (non-
X and non-Y ) parents of X and Y that are not parents of
Z, and let R = PaHZ↓XY be all of Z’s parents other than
X and Y . Using this notation, we can re-write the two
conditions of the lemma as:

X⊥⊥GY |R,S (14)

and
X⊥⊥GY |Z,R,S (15)

From the Weak Transitivity axiom we conclude from
these two independences that either Z⊥⊥GX|R,S or
Z⊥⊥GX|R,S. Assume the first of these is true

Z⊥⊥GX|R,S (16)

If we apply the Composition axiom to the independences
in Equation 14 and Equation 16 we get X⊥⊥HY,Z|R,S;
applying the Weak Union axiom we can then pull Y into

the conditioning set to get:

Z⊥⊥HX|{Y,R},S (17)

Because {Y,R}, X is precisely the parent set of Z, and
because S (i.e., the parents of Z’s parents) cannot contain
any descendant of Z, we know by the Markov conditions
that

Z⊥⊥HS|{Y,R}, X (18)

Applying the Intersection Axiom to the independences in
Equation 17 and Equation 18 yields:

Z⊥⊥HX|Y,R

Because Y,R = PaHZ↓X , this means the first independence
implied by the lemma follows.

If the second of the two independence facts that follow
from Weak Transitivity hold (i.e., if Z⊥⊥GX|R,S), then a
completely parallel application of axioms leads to the sec-
ond independence implied by the lemma.

B.5 Intermediate Result: The “Move Lower” Lemma

Lemma 6. Let Y be any H-descendant of an H-lowest
G-leaf . If there exists an X ∈ NonDeHY that has a com-
monH-descendant with Y and for which

Y⊥⊥GX|PaHY ↓X

then there exists an edge W → Z that is deletable in H,
where Z is a properH-descendant of Y .

Proof: Let Z be the highest common descendant of Y and
X , let DY be the lowest descendant of Y that is a parent
of Z, and let DX be any descendant of X that is a parent
of Z. We know that either (1) DY = Y and DX = X or
(2) DY and DX are not adjacent and have no directed path
connecting them; if this were not the case, andH contained
a path DY → . . . → DX (DX → . . . → DY ) then DX

(DY ) would be a higher common descendant than Z. This
means that in either case (1) or in case (2), we have

DY⊥⊥GDX |PaHDY ↓DX
(19)

For case (1), this is given to us explicitly in the statement
of the lemma, and for case (2), PaHDY ↓DX

= PaHDY
and

thus the independence holds from the Markov conditions
in H because DX is a non-descendant of DY . Because in
both cases we know there is no directed path from DY to
DX , we know that all of PaHDX↓DY

are non-descendants of
DY , and thus we can add them (via Composition and Weak
Union) to the conditioning set of Equation 19:

DY⊥⊥GDX |PaHDY ↓DX
,PaHDX↓DY

(20)

For any PZ ∈ PaHZ↓DY DX
(i.e., any parent of Z excluding

DY and DX ), we know that PZ cannot be a descendant of



DY , else PZ would have been chosen instead of DY as the
lowest descendant of Y that is a parent of Z. Thus, we can
yet again add to the conditioning set (via Composition and
Weak Union) to get:

DY⊥⊥GDX |PaHDY ↓DX
,PaHDX↓DY

,PaHZ↓DY DX
(21)

Because no member of the conditioning set in Equation 21
is a descendant of DY , and because DY , by virtue of being
a descendant of Y , must also be a descendant of the H-
lowest G-leaf , we conclude from Lemma 4 that for (proper
H-descendant of Y ) Z we have:

DY⊥⊥GDX |PaHDY ↓DX
,PaHDX↓DY

,PaHZ↓DY DX
, Z

(22)
Given Equation 21 and Equation 22, we can apply Lemma
5 and conclude either (1) Z⊥⊥GDY |PaHZ↓DY

and hence
DY → Z is deletable in H or (2) Z⊥⊥GDX |PaHZ↓DX

and
hence DX → Z is deletable inH
Corollary 2. Let L be an H-lowest G-leaf , and let A be
anyH-highest child of L. If there exists an edge A← B in
H for which L and B are not adjacent, then either L→ A
or A← B is deletable inH.

Proof: Because L is equal to (and thus a descendant of)
an H-lowest G-leaf , it satisfies the requirement for “Y ” in
the statement of Lemma 6. Because A is the highest child
of L, B cannot be a descendant of L and thus satisfies the
requirement of “X” in the statement of Lemma 6. From
the proof of the lemma, if we choose A to be the highest-
common descendant (i.e., “Z”), the corollary follows by
noting that because A is the highest H-child of L, L must
be a lowest parent of A, and thus we can choose DY = L
DX = B.

B.6 Intermediate Result: “The Move-Down
Corollary”

Corollary 3. Let X → Y be any deletable edge within H
for which Y is a descendant of an H-lowest G-leaf . Then
there exists an edge Z → W that is deletable in H for
which Z and W have no common descendants.

Proof: If X and Y have a common descendant, we know
from Lemma 6 that there must be another deletable edge
Z → W for which W is a proper descendant of Y , and
thus Z and W satisfy the conditions for “X” and “Y ”, re-
spectively, in the statement of Lemma 6, but with a lower
“Y ” than we had before. Because H is acyclic, if we re-
peatedly apply this argument we must reach some edge for
which the endpoints have no common descendants.

B.7 Main Result: Proof of Theorem 2

Theorem 2 If G < C for CPDAG C and DAG G, then
for any EIH property Π that holds on G, there exists a Π-
consistent Delete(X,Y,H) that when applied to C results
in the CPDAG C′ for which G ≤ C′.

Proof: Consider any DAG H0 in [C]≈. From Theorem 4,
we know that there exists either a covered edge or deletable
edge inH0; if we reverse any covered edge in DAGHi, the
resulting DAG Hi+1 (which is equivalent to Hi) will be
closer to G in terms of total edge differences, and therefore
because H0 6= G we must eventually reach an H = Hi for
which Theorem 4 identifies a deletable edge e. The edge e
inH satisfies the preconditions of Corollary 3, and thus we
know that there must also exist a deletable edge X → Y
in H for which X and Y have no common descendants in
H[V] for V = Prune(G,H).

Let H′ be the DAG that results from deleting the edge
X → Y in H. Because there is a GES delete opera-
tor corresponding to every edge deletion in every DAG
in [C]≈, we know there must be a set H for which the
operator Delete(X,Y,H)—when applied to C—results in
C′ = [H′]≈. Because X → Y is deletable in H, the op-
erator satisfies the IMAP requirement in the theorem. For
the remainder of the proof, we demonstrate that it is Π-
consistent.

Because all directed edges in C′ are compelled, these edges
must exist with the same orientation in all DAGs in [C′]≈;
it follows that any subset W of the common descendants
of X and Y in C′ must also be common descendants of
X and Y in H′. But because X and Y have no common
descendants in the “pruned” subgraphH[V], we know that
W is contained entirely in the complement of V, which
meansH[W] = G[W]; becauseH′ is the same asH except
for the edge X → Y , we concludeH′[W] = G[W].

We now consider the induced subgraph H′[W ∪X ∪ Y ]
that we get by “expanding” the graph H′[W] to include X
and Y . Because X and Y are not adjacent in H′, and be-
causeH′ is acyclic, any edge inH′[W ∪X ∪ Y ] that is not
inH′[W] must be directed from either X or Y into a node
in the descendant set W. Because all nodes in W are in
the complement of V, these new edges must also exist in
G, and we conclude H′[W ∪X ∪ Y ] = G[W ∪X ∪ Y ].
To complete the proof, we note that because Π is heredi-
tary, it must hold on H′[W ∪X ∪ Y ]. From Proposition
??, we know H′[W ∪X ∪ Y ] ≈ C′[W ∪X ∪ Y ]), and
therefore because Π is equivalence invariant, it holds for
C′[W ∪X ∪ Y ].

References

[1] Pieter Abbeel, Daphne Koller, and Andrew Y. Ng.
Learning factor graphs in polynomial time and sample
complexity. Journal of Machine Learning Research,
7:1743–1788, 2006.

[2] Steen A. Andersson, David Madigan, and Michael D.
Perlman. A characterization of Markov equivalence
classes for acyclic digraphs. Annals of Statistics,
25:505–541, 1997.



[3] Jean R. S. Blair and Barry W. Peyton. An introduction
to chordal graphs and clique trees. In Graph Theory
and Sparse Matrix Computations, pages 1–29, 1993.

[4] David Maxwell Chickering. A transformational char-
acterization of Bayesian network structures. In
S. Hanks and P. Besnard, editors, Proceedings of
the Eleventh Conference on Uncertainty in Artificial
Intelligence, Montreal, QU, pages 87–98. Morgan
Kaufmann, August 1995.

[5] David Maxwell Chickering. Learning Bayesian net-
works is NP-Complete. In D. Fisher and H.J. Lenz,
editors, Learning from Data: Artificial Intelligence
and Statistics V, pages 121–130. Springer-Verlag,
1996.

[6] David Maxwell Chickering. Optimal structure iden-
tification with greedy search. Journal of Machine
Learning Research, 3:507–554, November 2002.

[7] David Maxwell Chickering and Christopher Meek.
Finding optimal Bayesian networks. In A. Darwiche
and N. Friedman, editors, Proceedings of the Eigh-
teenth Conference on Uncertainty in Artificial Intelli-
gence, Edmonton, AB, pages 94–102. Morgan Kauf-
mann, August 2002.

[8] David Maxwell Chickering and Christopher Meek.
Selective greedy equivalence search: Finding opti-
mal Bayesian networks using a polynomial number of
score evaluations. In Proceedings of the Thirty First
Conference on Uncertainty in Artificial Intelligence,
Amsterdam, Netherlands, 2015.

[9] David Maxwell Chickering and Christopher Meek.
Selective greedy equivalence search: Finding opti-
mal Bayesian networks using a polynomial number
of score evaluations. 2015, arxiv:1506.2849v1.

[10] David Maxwell Chickering, Christopher Meek, and
David Heckerman. Large-sample learning of
Bayesian networks is NP-hard. Journal of Machine
Learning Research, 5:1287–1330, October 2004.

[11] C. Chow and C. Liu. Approximating discrete prob-
ability distributions with dependence trees. IEEE
Transactions on Information Theory, 14:462–467,
1968.

[12] S. Dasgupta. Learning polytrees. In K. Laskey
and H. Prade, editors, Proceedings of the Fifteenth
Conference on Uncertainty in Artificial Intelligence,
Stockholm, Sweden, pages 131–141. Morgan Kauf-
mann, 1999.

[13] J. Edmonds. Optimum branching. J. Res. NBS,
71B:233–240, 1967.

[14] Nir Friedman, Iftach Nachman, and Dana Peer.
Learning bayesian network structure from massive
datasets: The “sparse candidate” algorithm. In Pro-
ceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, Stockholm, Sweden. Mor-
gan Kaufmann, 1999.

[15] Serge Gaspers, Mikko Koivisto, Mathieu Liedloff,
Sebastian Ordyniak, and Stefan Szeider. On finding
optimal polytrees. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence. AAAI
Press, 2012.

[16] Dan Geiger, Azaria Paz, and Judea Pearl. Learning
causal trees from dependence information. In Pro-
ceedings of the Eighth National Conference on Arti-
ficial Intelligence - Volume 2, AAAI’90, pages 770–
776. AAAI Press, 1990.

[17] Steven B. Gillispie and Michael D. Perlman. Enumer-
ating Markov equivalence classes of acyclic digraph
models. In M. Goldszmidt, J. Breese, and D. Koller,
editors, Proceedings of the Seventeenth Conference
on Uncertainty in Artificial Intelligence, Seattle, WA,
pages 171–177. Morgan Kaufmann, 2001.

[18] Markus Kalisch and Peter Buhlmann. Estimating
high-dimensional directed acyclic graphs with the pc
algorithm. Journal of Machine Learning Research,
8:613–636, 2007.

[19] David Karger and Nathan Srebro. Learning Markov
networks: Maximum bounded tree-width graphs. In
12th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 391–401, January 2001.

[20] Mikko Koivisto and Kismat Sood. Exact bayesian
structure discovery in bayesian networks. J. Mach.
Learn. Res., 5:549–573, December 2004.

[21] Kaname Kojima, Eric Perrier, Seiya Imoto, and
Satoru Miyano. Optimal search on clustered struc-
tural constraint for learning Bayesian network struc-
ture. Journal of Machine Learning Resarch, 11:285–
310, 2010.

[22] Christopher Meek. Finding a path is harder than find-
ing a tree. Journal of Artificial Intelligence Research,
15:383–389, 2001.

[23] Mukund Narasimhan and Jeff Bilmes. Pac-learning
bounded tree-width graphical models. In Proceed-
ings of the 20th Conference on Uncertainty in Artifi-
cial Intelligence, UAI ’04, pages 410–417, Arlington,
Virginia, United States, 2004. AUAI Press.

[24] Sebastian Ordyniak and Stefan Szeider. Parameter-
ized complexity results for exact bayesian network
structure learning. Journal of Artificial Intelligence
Research, 46:263–302, 2013.



[25] Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, CA, 1988.

[26] Dafna Shahaf, Anton Chechetka, and Carlos
Guestrin. Learning thin junction trees via graph cuts.
In In Artificial Intelligence and Statistics (AISTATS),
Clearwater Beach, Florida, April 2009.

[27] Tomi Silander and Petri Myllymäki. A simple ap-
proach for finding the globally optimal bayesian net-
work structure. In Proceedings of the Twenty Second
Conference on Uncertainty in Artificial Intelligence,
Cambridge, MA, pages 445–452, 2006.

[28] Peter Spirtes, Clark Glymour, and Richard Scheines.
Causation, Prediction, and Search. Springer-Verlag,
New York, 1993.

[29] Ioannis Tsamardinos, Laura E. Brown, and Con-
stantin F. Aliferis. The max-min hill-climbing
Bayesian network structure learning algorithm. Ma-
chine Learning, 2006.

[30] Thomas Verma and Judea Pearl. Equivalence and syn-
thesis of causal models. In M. Henrion, R. Shachter,
L. Kanal, and J. Lemmer, editors, Proceedings of the
Sixth Conference on Uncertainty in Artificial Intelli-
gence, pages 220–227, 1991.


