
Learning Equivalence Classes of Bayesian Network Structures

David Maxwell Chickering�

Computer Science Department
University of California at Los Angeles

dmax@cs.ucla.edu

Abstract

Approaches to learning Bayesian networks
from data typically combine a scoring met-
ric with a heuristic search procedure. Given
a Bayesian network structure, many of the
scoring metrics derived in the literature re-
turn a score for the entire equivalence class
to which the structure belongs. When using
such a metric, it is appropriate for the heuris-
tic search algorithm to search over equiva-
lence classes of Bayesian networks as opposed
to individual structures. We present the gen-
eral formulation of a search space for which
the states of the search correspond to equiv-
alence classes of structures. Using this space,
any one of a number of heuristic search al-
gorithms can easily be applied. We compare
greedy search performance in the proposed
search space to greedy search performance in
a search space for which the states correspond
to individual Bayesian network structures.

1 INTRODUCTION

Recently, many researchers have developed meth-
ods for learning Bayesian networks from data.
The available techniques include Bayesian methods
[Cooper and Herskovits, 1991, Buntine, 1991,
Spiegelhalter et al., 1993, Heckerman et al., 1995],
quasi-Bayesian
methods [Lam and Bacchus, 1993, Bouckaert, 1993],
and non-Bayesian methods [Pearl and Verma, 1991,
Spirtes et al., 1993]. Much of the work in learning
Bayesian networks has been devoted to the deriva-
tion of a scoring metric. Given a candidate Bayesian
network structure, the scoring metric evaluates how
well the structure \�ts" the observed data and prior

�Supported by NSF Grant No. IRI-9119825, and a
grant from Rockwell International.

knowledge. Once the scoring metric has been de�ned,
learning Bayesian networks reduces to a search for
one or more structures that have a high metric score.
Chickering (1995a) shows that this search problem is
NP-hard when the Bayesian scoring metric derived by
Heckerman et al. (1995) is used. Consequently, it is
appropriate to apply heuristic search algorithms in this
domain.

Before any search algorithm can be applied to a prob-
lem, we must de�ne the three components of a search

space. First, we need to identify the states of the
search, or equivalently, the set of all potential solu-
tions to the search problem. Second, we need a repre-
sentation for the states of the search. Third, we need
a set of operators that transform the representation of
one state to another so that the algorithm can traverse
the space in a systematic way. Once the search space
has been de�ned, any one of a number of well-known
search algorithms can easily be applied to that space.

In perhaps the simplest formulation of a search space
for learning Bayesian networks, the states of the search
are de�ned to be individual Bayesian networks, the
representation of a state is simply an acyclic directed
graph, and the operators are de�ned to be local
changes to those graphs. For example, Chickering et
al. (1995) compare various search procedures in the
search space of Bayesian networks, using the following
operators: for any pair of nodes x and y, if x and y

are adjacent, the edge connecting them can be either
deleted or reversed. If x and y are not adjacent, an
edge can be added in either direction. All operators
are subject to the constraint that a cycle can not be
formed. We shall use Bayesian-network space, or B-
space for short, to denote the search space de�ned in
this way. Figure 1 shows an example of each operator
in B-space.

When two Bayesian networks assert the same set of
independence assumptions among the variables in the
domain, we say that those networks are equivalent.
The relation of network equivalence imposes a set of

x

y z

x

y z

Add

x z

x

y z

Add

z x

x

y z

Delete

y x

x

y z

Reverse

y x

x

y z

Delete

y z

x

y z

Reverse

y z

Initial
State

Figure 1: States resulting from the application of a
single operator in B-space

equivalence classes over Bayesian network structures.
Chickering (1995b) shows that many of the scoring
metrics derived in the literature actually return the
measure of �t for the entire equivalence class to which
the candidate structure belongs. We call any such met-
ric score equivalent.

If B-space is used by a search algorithm in conjunction
with a score-equivalent metric, any particular equiva-
lence class may be represented by a huge number of
search states. Furthermore, many of the operators de-
�ned for this space move between states corresponding
to the same equivalence class. Because the objective of
the search algorithm is to identify the state with high-
est metric score, it seems natural that the states of the
search space should correspond to equivalence classes
of Bayesian networks whenever a score-equivalent met-
ric is used.

In this paper we provide the speci�cation for a search
space in which the states are de�ned to be equivalence
classes of Bayesian networks. In Section 2 we intro-
duce our notation and describe previous relevant work.
In Section 3, we de�ne the search space. In particu-
lar, we describe an e�cient representation for equiva-
lence classes, and introduce a set of simple operators
that can be applied to this representation. Finally, in
Section 4 we compare greedy search performance in B-
space to greedy search performance in the search space
that we de�ne in Section 3. We should emphasize that
the search space we propose is suitable for any num-
ber of search algorithms, and that we have chosen to
compare this space to B-space using greedy search be-
cause greedy search is very prevalent in the literature
on learning Bayesian networks.

2 BACKGROUND

In this section we introduce our notation and describe
previous relevant work.

A Bayesian network B for a set of variables U =
fx1; : : : ; xng is a pair (G; �G) where G = (U;EG) is
a dag, and �G is the set of conditional probability dis-
tributions that correspond to G. We now present a
formal de�nition of equivalence.

De�nition Two dags G and G0 are equivalent if for
every Bayesian network B = (G; �G), there exists a

Bayesian network B0 = (G0; �G0) such that B and

B0 de�ne the same probability distribution, and vice

versa.

We use G � G 0 to denote that G and G0 are equivalent.
As was stated earlier, the relation � de�nes a set of
equivalence classes over the network structures. A di-
rected edge xi ! xj 2 EG is compelled in G if for every

dag G0 � G, xi ! xj 2 EG0 . For any edge e 2 EG , if
e is not compelled in G, then e is reversible in G, that
is, there exists some dag G0 equivalent to G in which e

has opposite orientation.

The skeleton of any dag is the undirected graph re-
sulting from ignoring the directionality of every edge.
A v-structure in dag G is an ordered triple of nodes
(x; y; z) such that (1) G contains the arcs x ! y and
z ! y, and (2) x and z are not adjacent in G. Verma
and Pearl (1990) derive the following characterization
of equivalent structures:

Theorem 1 [Verma and Pearl, 1990] Two dags are

equivalent if and only if they have the same skeletons

and the same v-structures.

Figure 2 shows the set of all 27 states of B-space de-
�ned over three-node Bayesian networks. All dags con-
tained within the same dashed rectangle are equivalent
| there are 11 equivalence classes for this space.

A consequence of Theorem 1 is that for any edge e

participating in a v-structure in some dag G, if that
edge is reversed in some other dag G0, then G and G0

are not equivalent. Thus any edge participating in a v-
structure is compelled. However, not every compelled
edge necessarily participates in a v-structure | we
leave as an exercise to the reader to prove that the
edge from z to w is compelled in the dag shown in
Figure 3.

Acyclic partially directed graphs, or pdags for short,
are graphs that contain both directed and undirected
edges, and are commonly used to represent equiva-
lence classes of Bayesian networks1. Let P denote an

1pdags are sometimes called patterns in the literature

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

x

y z

Figure 2: The 27 states of B-search for networks con-
taining three nodes. The equivalent networks in this
space are grouped together with a dashed rectangle.

arbitrary pdag. We de�ne the equivalence class of dags
corresponding to P | denoted Class(P) | as follows:
G 2 Class(P) if and only if G and P have the same
skeleton and the same set of v-structures2 . FromTheo-
rem 1, it follows that a pdag containing a directed edge
for every edge participating in a v-structure, and an
undirected edge for all other edges, uniquely identi�es
an equivalence class of dags. However, there may be
many other pdags that correspond to the same equiv-
alence class. For example, any dag interpreted as a
pdag can be used with our de�nition of Class to rep-
resent its own equivalence class. It follows that for
an equivalence class containing k dags, there are at

least k di�erent pdags that can represent that class.
In the next section, we introduce a subclass of pdags
that have a one to one correspondence with equiva-
lence classes.

If a dag G has the same skeleton and the same set of
directed edges as a pdag P, we say that G is a con-

sistent extension of P. Note that any dag that is a
consistent extension of P must also be contained in
Class(P), but that not every dag in Class(P) is a

2The de�nitions for the skeleton and set of v-structures
for a pdag are the obvious extensions to these de�nitions
for dags.

w

yx

z

Figure 3: Example of a dag containing a compelled
edge that does not participate in a v-structure.

consistent extension of P. If there is at least one con-
sistent extension of a pdag P , we say that P admits

a consistent extension. Figure 4a shows a pdag that
admits a consistent extension, and Figure 4b shows
one such consistent extension. Figure 4c shows a pdag
that does not admit a consistent extension.

w

yx

z

w

yx

z

(a) (b)

w

yx

z

(c)

Figure 4: (a) a pdag that admits a consistent exten-
sion, (b) a consistent extension of the pdag in (a) and
(c) a pdag that does not admit a consistent extension.

3 DEFINING THE SEARCH SPACE

As was discussed in Section 1, a search space has three
components: (1) a set of states, (2) a representation
for the states, and (3) a set of operators. Given that
a score-equivalent metric is being used, we have ar-
gued that the states of the search should be equiva-
lence classes of Bayesian network structures. In this

section, we de�ne an e�cient representation for equiv-
alence classes, and a simple set of operators that can
be applied to this representation. We call the result-
ing search space equivalence-class space, or E-space for
short.

Recall the de�nition of compelled and reversible edges
given in Section 2. Every dag in a particular equiva-
lence class has the same set of compelled and reversible
edges, and consequently we can associate compelled
and reversible edges with equivalence classes as well
as with dags. We de�ne the completed pdag represen-

tation of an equivalence class to be the pdag consist-
ing of a directed edge for every compelled edge in the
equivalence class, and an undirected edge for every re-
versible edge in the equivalence class. Figure 5a shows
a dag G, and Figure 5b shows the completed pdag rep-
resentation for Class(G).

w

yx

z u

w

yx

z u

(a) (b)

Figure 5: (a) a dag G and (b) the completed pdag
representation for Class(G)

We use completed pdags to represent the states of the
search in E-space. Using completed pdags instead of
general pdags (or dags in the case of B-space) elimi-
nates the problem of having multiple representations
for the same equivalence class. We emphasize this re-
sult with a lemma:

Lemma 2 Let Pc
1 and Pc

2 denote two completed

pdags that both admit a consistent extension. Then

Pc
1 = Pc

2 if and only if Class(Pc
1) = Class(Pc

2).

Proof: Follows immediately by Theorem 1 and by
de�nition of compelled and reversible edges.

To complete the speci�cation of E-space, we de�ne a
set of simple operators that can be applied to com-
pleted pdags. The operators make extensive use of
two algorithms. The �rst algorithm, which we re-
fer to as PDAG-to-DAG, takes as input an arbi-
trary pdag and returns a consistent extension if one
exists. PDAG-to-DAG returns an error message if
the given pdag does not admit a consistent extension.
Dor and Tarsi (1992) present an e�cient implemen-
tation of PDAG-to-DAG that we used for our ex-
perimental results. The second algorithm, which we

refer to as DAG-to-PDAG, takes as input an arbi-
trary dag G and returns the completed pdag repre-
sentation for Class(G). Chickering (1995b) and Meek
(1995) have both derived implementations of DAG-
to-PDAG. For our experimental results, we used the
algorithm derived by Chickering (1995b), which is
asymptotically optimal in the average case.

Given a completed pdag Pc, we de�ne the following
four types of operators:

1. For any undirected edge x�y in Pc, we can delete
the edge

2. For any directed edge x! y in Pc, we can either
delete the edge or reverse the edge

3. For any pair of nodes x and y that are not adjacent
in Pc, we can either insert an undirected edge
between x and y, or insert a directed edge in either
direction

4. For any triple of nodes x, y and z in Pc, if x and z
are not adjacent, and either x and y or z and y are
adjacent, we can insert the v-structure (x; y; z)

All operators are subject to the constraint that the
resulting pdag is acyclic and admits a consistent ex-
tension.

For a given completed pdag, let P denote the pdag, not
necessarily completed, that results after directly ap-
plying one of the operators. The completed pdag that
results from the operator is obtained as follows. First,
the algorithmPDAG-to-DAG is called with input P
to extract a consistent extension G. If Pdoes not ad-
mit a consistent extension, then the given operator is
not legal. To complete the application, the algorithm
DAG-to-PDAG is called with input G to build the
resulting completed pdag representation. The process
of applying an operator is depicted schematically in
Figure 6, and the application of each operator type is
illustrated in Figure 7.

Note that the consistent extension obtained during the
application of an operator can be used to score the re-
sulting state if the scoring metric takes a dag as input,
which is typically the case. Alternatively, PDAG-to-
DAG can be called with the completed pdag repre-
sentation of a state whenever that state needs to be
scored.

The proposed operators are all simple and local
changes to the the edges in a pdag, but as we see in the
example of Figure 6 an operator can have \cascading"
e�ects on the pdag. Furthermore, a local change in a
completed pdag may not correspond to a local change
in the consistent extension used to score the equiva-
lence class. This is unfortunate, because most scoring

Apply Operator to
Completed PDAG

Build Consistent
Extension

(PDAG-to-DAG)

Build Completed
PDAG

(DAG-to-PDAG)

Initial State:
Completed PDAG

PDAG

DAG

Final State:
Completed PDAG

Delete y z

w

yx

z u

w

zx

z u

w

yx

z u

w

zx

z u

w

yx

z u

w

yx

z u

Figure 6: Diagram depicting how operators are ap-
plied. The pdags on the right give an example for
every stage of the process.

metrics can exploit the locality of changes to dags to ef-
�ciently update the corresponding score. Fortunately,
we have found that the cascading e�ects are not very
common in practice. For most of the operator applica-
tions, the resulting state can be scored by applying a
small number of local changes to a consistent extension
of the current state.

4 EXPERIMENTAL RESULTS

In this section we compare the performance of greedy
search when applied to E-space to the performance of
greedy search when applied to B-space. Greedy search
is a simple algorithm that, given the current state,
always moves to the adjacent state that increases the
metric score the most. If no adjacent state has a higher
metric score, the algorithm terminates. In all of our
experiments, we used greedy search to identify a single
equivalence class with a high metric score.

Many researchers comparing search algorithms mea-
sure search performance in terms of how close the
learned network (or equivalence class) is to the gold

standard network, or the model from which the train-

w

yx

z u

w

yx

z u
Delete

z wy u

w

yx

z u
Delete

w

yx

z u
Reverse

z w

w

yx

z u
Insert

u w

w

yx

z u
Insert

y u w

Initial
State

Figure 7: Example of each type of operator

ing data was generated. Typical choices for this com-
parison include structural di�erence and cross entropy.
Although we report structural di�erences in our re-
sults, we emphasize that the goal of the search algo-
rithm is to identify the structure with highest metric
score, and consequently metric score is the best indi-
cator of search performance in this domain.

In our experiments we compared the structure of
the learned equivalence class to the structure of the
equivalence class to which the gold standard belongs.
To make this comparison, we �rst generated the
completed pdag representation for both equivalence
classes. Then, for each pair of nodes in the pdags, if
the edge between those nodes were di�erent in the two
structures, we added one to the structural di�erence.

For all of our experiments, we used a score-equivalent
variant of the BDe metric derived by Heckerman at
al. (1995). Given data and prior knowledge, the BDe
metric evaluates the relative posterior probability of
the candidate structure using some reasonable assump-
tions. The version we used corresponds to an empty
prior network and an equivalent sample size of either
8 (for the random graphs) or 16 (for the Alarm net-
work). For a detailed description of the BDe metric
we refer the reader to Heckerman et al. (1995). In all
of the results reported, the BDe scores are expressed
in log-space.

Table 1: E�ect of gold-standard size on search performance. Each metric score and structural di�erence is the
average over 9 total random databases consisting of 500 cases each.

Number E-space B-space Score E-space B-space Struct E-space B-space Time
of Nodes Score Score Di�. Struct Struct Di� Time Time Ratio
5 -1326.64 -1327.06 0.42 0.78 1.44 0.66 1 0 |
10 -2745.55 -2764.05 18.5 4.44 10.56 6.12 18.11 1.67 10.84431
15 -3665.29 -3677.17 11.88 17.67 21.89 4.22 70.44 6.22 11.32476
20 -5372.94 -5408.67 35.73 25.11 30.78 5.67 184.67 11.78 15.67657
25 -6786.83 -6860.24 73.41 32.67 47.11 14.44 487.33 22.56 21.60151

For each experiment we present (1) the di�erence in
metric score, (2) the di�erence in structural di�erence
from the gold standard, and (3) the ratio of learn-
ing times. The di�erence in metric score is the score
in E-space minus the score in B-space, and hence any
positive number indicates that search in E-space is out-
performing search in B-space. The di�erence in struc-
tural di�erence, however, is the structural di�erence
in B-space minus the structural di�erence in E-space.
We chose to present the results this way so that a posi-
tive di�erence in structural score also denotes a win for
E-space. The ratio of times denotes how many times
longer the search in E-space took than the search in
B-space. This ratio was always greater than one.

For many of the experiments we used randomly-
generated gold standards. All random gold standards
contained binary variables, and were generated as fol-
lows: for every pair of nodes in the graph, a directed
edge was inserted with probability 0:3, subject to the
constraint that no node could have more than 4 par-
ents. Each conditional parameter set of the resulting
network was drawn from a uniform Dirichlet distribu-
tion.

Our �rst experiment investigated how search perfor-
mance in E-space compares to search performance in
B-space as the size of the graphs increase. We used
�ve sizes for the gold-standard in this experiment: 5,
10, 15, 20, and 25 nodes. For each graph size, we gen-
erated three random gold standards. For each gold
standard, we generated three random databases, con-
sisting of 500 cases each. We ran greedy search in both
E-space and B-space, using each of the databases gen-
erated. The results are summarized in Table 1. For
every gold-standard size, greedy search in E-space out-
performed greedy search in B-space, both in terms of
the average metric score and in terms of the average
structural di�erence. Furthermore, as the complexity
of the gold standard increased, the di�erence between
the quality measures tended to increase as well.

Our next experiment compares the search spaces when
the size of the database increases. We used random

gold standards for this experiment, where each gold
standard contained 10 binary nodes. We used six
database sizes: 500, 1000, 1500, 2000, 2500, and 3000
cases. For each database size, three gold standards
were generated, and for each gold standard, three
databases containing of the given number of cases were
generated. For each database, greedy search was run
in both E-space and B-space. The results are sum-
marized in Table 2. Again, greedy search in E-space
outperformed greedy search in B-space, in both qual-
ity measures, for every database size. The di�erence
in the measures increased at �rst, but leveled o� as the
size of the databases increased. We conjecture that as
the database size grows inde�nitely, this di�erence will
decerease and eventually greedy search in either space
will obtain the same equivalence class. We base this
conjecture on the assumption that as the data grows to
in�nity, the both search spaces will become smoother.

The �nal experiment was run using data generated
from the Alarm network (Beinlich et al., 1989). The
network, which contains 37 nodes and 46 edges, is
an expert system for the problem of ICU ventilator
management and has become a standard benchmark
for learning algorithms. We generated 10 databases
from the Alarm network, where each database con-
tained 500 cases. For each database, greedy search
was run in both E-space and B-space. The results are
summarized in Table 3. In this table, we have ommit-
ted the search time because we were unable to �nish
the experiment using some obvious optimizations for
E-space (which were implemented for all the other ex-
periments). Without these optimizations, the search
time in E-space was approximately 130 times longer
than the search time in B-space. We are con�dent
that this ratio will be signi�cantly reduced.

5 DISCUSSION

Although our empirical results show that the greedy
algorithm applied to E-space consistently outperforms
the greedy algorithm applied to B-space, the time to
complete the search in E-space was signi�cantly longer.

Table 2: E�ect of database size on search performance. Each metric score and structural di�erence entry is the
average over 9 total databases generated from gold standards containing 10 nodes.

DB E-space B-space Score E-space B-space Struct E-space B-space Time
Size Score Score Di�. Struct Struct Di� Time Time Ratio
500 -2745.55 -2764.05 18.5 4.44 10.56 6.12 18.11 1.67 10.84431
1000 -5399.82 -5449.35 49.53 2.67 9.22 6.55 21.67 3.33 6.507508
1500 -8092.83 -8148.43 55.6 3.56 8.22 4.66 25.67 4.33 5.928406
2000 -10724.9 -10825.1 100.2 2 7 5 34.56 6.11 5.656301
2500 -13386.5 -13416.6 30.1 2.78 10.78 8 36.89 8.22 4.487835
3000 -16050.7 -16146 95.3 2.78 12.22 9.44 43 9.33 4.608789

Table 3: Greedy search performance for the Alarm metric. Metric scores and structural di�ererences are averages
over 10 databases, where each database contains 500 cases.

E-space B-space Score E-space B-space Struct
Score Score Di�. Struct Struct Di�
-5599.72 -5625.88 26.16 72.9 82 9.1

There are two reasons for this. Consider a search
where all networks have n nodes. In B-space, there are
n(n�1)

2
operators for greedy search to consider at each

step. In E-space, however, there are n(n�1)
2 +2e(n�2)

operators at each step, where e denotes the number of
edges in the current completed pdag (the extra opera-
tors correspond to v-structure insertions). In addition
to the extra operators, there is also additional over-
head to apply each operator. In particular, the algo-
rithm PDAG-to-DAG runs in time O(n2), and the
algorithm DAG-to-PDAG runs in time O(e). Note
that the extra overhead from these algorithms is a
function of the network and does not depend on the
size of the database. Consequently, as the data-sets
grow large this overhead becomes less signi�cant, as is
demonstrated in Table 2.

In addition to the optimizations alluded to in the pre-
vious section, there are many tricks that can be ap-
plied to speed up search in E-space that we did not
have time to complete. For the �nal version of this
paper, we anticipate a signi�cant reduction in running
time for E-space.

As with most search problems, performance can be im-
proved by customizing the algorithms for the particu-
lar domain. We believe that by restricting the num-
ber of v-structure insertions allowed to be applied to
any given state, the time to complete greedy search
in E-space can be reduced to roughly the same time
as in B-space, without signi�cant reduction in solution
quality.

An interesting extension to the work presented here is

to combine E-space and B-space. One approach would
be to run the greedy search in B-space until a local
maximum is reached. Next, generate the completed
pdag representation and see if the score can be in-
creased in E-space. If it can, make one step in E-space
and then switch back to B-space and go to the next
local maximum. This approach will be fast because
each local maximum is reached in B-space. Further-
more, by using E-space to get out of these local max-
ima, we hope that the resulting search performance
will be good.

References

[Beinlich et al., 1989] Beinlich, I., Suermondt, H.,
Chavez, R., and Cooper, G. (1989). The ALARM
monitoring system: A case study with two proba-
bilistic inference techniques for belief networks. In
Proceedings of the Second European Conference on

Arti�cial Intelligence in Medicine, London, pages
247{256. Springer Verlag, Berlin.

[Bouckaert, 1993] Bouckaert, R. (1993). Probabilistic
network construction using the minimum descrip-
tion length principle. In ECSQARU, pages 41{48.

[Buntine, 1991] Buntine, W. (1991). Theory re�ne-
ment on Bayesian networks. In Proceedings of Sev-

enth Conference on Uncertainty in Arti�cial Intelli-

gence, Los Angeles, CA, pages 52{60. Morgan Kauf-
mann.

[Chickering et al., 1995] Chickering, D., Geiger, D.,
and Heckerman, D. (1995). Learning Bayesian net-

works: Search methods and experimental results. In
Proceedings of the Fifth International Workshop on

Arti�cial Intelligence and Statistics.

[Chickering, 1995a] Chickering, D. M. (1995a). Learn-
ing Bayesian networks is NP-Complete. Submitted

to: Lecture Notes in Statistics.

[Chickering, 1995b] Chickering, D. M. (1995b). A
transformational characterization of Bayesian net-
work structures. In Proceedings of Eleventh Confer-

ence on Uncertainty in Arti�cial Intelligence. Mor-
gan Kaufmann. to appear.

[Cooper and Herskovits, 1991] Cooper, G. and Her-
skovits, E. (1991). A Bayesian method for construct-
ing Bayesian belief networks from databases. In Pro-
ceedings of Seventh Conference on Uncertainty in

Arti�cial Intelligence, Los Angeles, CA, pages 86{
94. Morgan Kaufmann.

[Dor and Tarsi, 1992] Dor, D. and Tarsi, M. (1992).
A simple algorithm to construct a consistent exten-
sion of a partially oriented graph. Technical Report
R-185, Cognitive Systems Laboratory, UCLA Com-
puter Science Department.

[Heckerman et al., 1995] Heckerman, D., Geiger, D.,
and Chickering, D. (1995). Learning discrete
Bayesian networks. Machine Learning. to appear.

[Lam and Bacchus, 1993] Lam, W. and Bacchus, F.
(1993). Using causal information and local mea-
sures to learn Bayesian networks. In Proceedings of

Ninth Conference on Uncertainty in Arti�cial Intel-

ligence, Washington, DC, pages 243{250. Morgan
Kaufmann.

[Meek, 1995] Meek, C. (1995). Causal inference and
causal explanation with background knowledge. In
Proceedings of Eleventh Conference on Uncertainty

in Arti�cial Intelligence, To Appear. Morgan Kauf-
man.

[Pearl and Verma, 1991] Pearl, J. and Verma, T.
(1991). A theory of inferred causation. In Allen,
J., Fikes, R., and Sandewall, E., editors, Knowl-
edge Representation and Reasoning: Proceedings of

the Second International Conference, pages 441{
452. Morgan Kaufmann, New York.

[Spiegelhalter et al., 1993] Spiegelhalter, D., Dawid,
A., Lauritzen, S., and Cowell, R. (1993). Bayesian
analysis in expert systems. Statistical Science,
8:219{282.

[Spirtes et al., 1993] Spirtes, P., Glymour, C., and
Scheines, R. (1993). Causation, Prediction, and

Search. Springer-Verlag, New York.

[Verma and Pearl, 1990] Verma, T. and Pearl, J.
(1990). Equivalence and synthesis of causal models.
In Proceedings of Sixth Conference on Uncertainty

in Arti�cial Intelligence, pages 220{227.

