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Abstract

We examine asymptotic approximations for
the marginal likelihood of a Bayesian net-
work. We consider the well-known LaPlace
and BIC approximations, as well as approx-
imations proposed by Draper (1993) and
Cheeseman and Stutz (1995). Each of these
measures can be used to approximate the
marginal likelihood of graphical models for
discrete, Gaussian, and Gaussian-mixture
distributions. In a series of experiments using
synthetic data generated from naive-Bayes
models having a hidden root node, we show
that the CS measure is both an accurate and
e�cient scoring function, and is likely to be
the most cost e�ective of all the measures.

1 Introduction

There is growing interest in the problem of learning
graphical models from data. Simple Bayesian tech-
niques have been developed for learning both directed
and undirected models, given a complete data set|
that is a data set in which each sample contains ob-
servations for every variable in the model. More com-
plex approximation techniques have been developed
for learning with incomplete data, including situations
where some variables are hidden or never observed.
These methods include Monte Carlo approaches such
as Gibbs sampling and importance sampling (Neal,
1993), sequential updating methods (Spiegelhalter &
Lauritzen, 1990; Cowell, Dawid, & Sebastiani, 1995),
and asymptotic approximations (Kass, Tierney, &
Kadane, 1988; Kass & Raftery, 1993; Draper, 1993).
Summaries of methods for learning graphical models
can be found in Heckerman (1995) and Buntine (1996).

�Author's primary a�liation: Computer Science De-
partment, University of California, Los Angeles, CA 90024.

In this paper, we compare the accuracy of vari-
ous asymptotic approximations for learning graphi-
cal models with hidden variables. We examine the
LaPlace approximation (Kass et al., 1988; Kass &
Raftery, 1993; Azevedo-Filho & Shachter, 1994) and
the Bayesian Information Criterion or BIC (Schwarz,
1978), which is equivalent to Risannen's (1987)
Minimum-Description-Length measure. In addition,
we consider two approximations described by Draper
(1993) and Cheeseman and Stutz (1995). Each of these
measures can be used to approximate the marginal
likelihood of graphical models for discrete, Gaussian,
and Gaussian-mixture distributions.

Both theoretical and empirical studies have shown
that the LaPlace approximation is more accurate than
is the BIC. Furthermore, it is well known that the
LaPlace approximation is signi�cantly less e�cient
than are the BIC, Draper, and Cheeseman-Stutz mea-
sures. To our knowledge, however, there have been
no theoretical or formal empirical studies that com-
pare the accuracy of the LaPlace approximation with
those of Draper and Cheeseman. Here, we describe an
experimental comparison of the approaches for learn-
ing directed graphical models (Bayesian networks) for
discrete variables where one variable is hidden.

2 Background and Motivation

The Bayesian approach for learning Bayesian networks
from data is as follows. Given a domain or set of
variables X = fX1; : : : ; Xng, suppose we know that
the true joint distribution of X can be encoded in
the Bayesian-network structure S. Let Sh denote the
hypothesis that this encoding is possible. Also, sup-
pose that we are uncertain about the parameters of
the Bayesian network (�s) that determine the true
joint distribution. Given a prior distribution over
these parameters and a random sample D = fX1 =
x1; : : : ;Xn = xng from the true joint distribution, we
can apply Bayes' rule to infer the posterior distribution



of �s:

p(�sjD;S
h) = c p(Dj�s; S

h) p(�sjS
h) (1)

where c is a normalization constant. Because D is a
random sample, the likelihood p(Dj�s; S

h) is simply
the product of the individual likelihoods

p(Dj�s; S
h) =

NY
l=1

p(xlj�s; S
h)

Furthermore, given some quantity of interest that is a
function of the network structure and its parameters,
f(S; �s), we can compute its expectation, given D, as
follows:

E(f(S; �s)jD;S
h) =

Z
f(S; �s) p(�sjD;S

h) d�s (2)

Consider the case where the variables X are discrete.
Let Pai denote the set of variables corresponding to
the parents of Xi. Let xki and pa

j
i denote the kth

possible state of Xi and the jth possible state of Pai,
respectively. Also, let ri and qi denote the number of
possible states of Xi and Pai, respectively. Assuming
that there are no logical constraints on the true joint
probabilities other than those imposed by the network
structure S, the parameters �s correspond to the true
probabilities (i.e., long-run fractions) associated with
the Bayesian-network structure. In particular, �s is
the set of parameters �ijk for all possible values of i; j;
and k, where �ijk is the true probability that Xi = xki
given Pai = pa

j
i . We use the notation

�ij = (�ijk)
ri
k=1 �i = (�ij)

qi
j=1 �s = (�i)

n
i=1

The likelihood for a random sample with no missing
observations is given by

p(Dj�s; S
h) =

nY
i=1

qiY
j=1

riY
k=1

�
Nijk

ijk

where Nijk are the su�cient statistics for the
likelihood|the number of samples inD in which Xi =
xki and Pai = pa

j
i . Consequently, we can compute the

posterior distribution of �s using Equation 1. This
computation is especially simple when (1) the param-
eter sets �ij are mutually independent|an assump-
tion we call parameter independence|and (2) the prior
distribution for each parameter set �ij is a Dirichlet
distribution

p(�ijjS
h) = c

riY
k=1

�
�ijk�1

ijk (3)

where c is a normalization constant and the �ijk > 0
are determined from prior knowledge.

Making the problem more di�cult, suppose that we
are also uncertain about which structure encodes the
true distribution. Given a prior distribution over the
possible network-structure hypotheses, we can com-
pute the corresponding posterior distribution using
Bayes rule:

p(ShjD) = c p(Sh) p(DjSh) (4)

= c p(Sh)

Z
p(Dj�s; S

h) p(�sjS
h) d�s

Given some quantity of interest, f(S; �s), we can com-
pute its expectation, given D:

E(f(S; �s)jD) =
X
Sh

p(ShjD)

Z
f(S; �s) p(�sjD;S

h) d�s

This full Bayesian approach is an example of what
statisticians call model averaging. This approach is
often prohibitive in cost, in which case, we can se-
lect one model S|for example, the network structure
with the largest posterior probability|and use Equa-
tion 2 as an approximation for the true expectation of
f(S; �s)jD). This approximate approach is an exam-
ple of model selection.

Whether we average over models or select a single
model, the key computation is that of p(DjSh), known
as the marginal likelihood of D given S, or simply the
marginal likelihood of S. The marginal likelihood,
when multiplied by the structure prior p(Sh) serves as
a \scoring function" for model selection. To simplify
the remainder of our discussion, we assume that the
structure prior is uniform, and refer to the marginal
likelihood alone as a scoring function.

When the random sample D is complete, parameters
are independent, and parameters priors are Dirichlet,
the computation of the marginal likelihood is straight-
forward:

p(DjSh) =
nY

i=1

qiY
j=1

�(�ij)

�(�ij + Nij)
�

riY
k=1

�(�ijk + Nijk)

�(�ijk)

(5)
This formula was �rst derived by Cooper and Her-
skovits (1992). Heckerman et al. (1995) refer to this
formula in conjunction with the structure prior as the
Bayesian Dirichlet (BD) scoring function.

When the random sample D is incomplete, the exact
computation of the marginal likelihood is intractable
for real-world problems (e.g., see Cooper & Herskovits,
1992). Thus, approximations are required. In this
paper, we consider asymptotic approximations.

One well-known asymptotic approximation is the
LaPlace or Gaussian approximation (Kass et al., 1988;
Kass & Raftery, 1993; Azevedo-Filho & Shachter,



1994). The idea behind the LaPlace approximation
is that, for large amounts of data, p(�sjD;S

h) /
p(Dj�s; Sh) � p(�sjSh) can often be approximated as
a multivariate Gaussian distribution. Consequently,

p(DjSh) =

Z
p(Dj�s; S

h) p(�sjS
h) d�s (6)

can be evaluated in closed form. In particular, let

g(�s) � log(p(Dj�s; S
h) � p(�sjS

h))

Let ~�s be the (vector) value of �s for which the poste-
rior probability of �s is a maximum:

~�s = argmax
�s

�
p(�sjD;S

h)
	
= argmax

�s

fg(�s)g

The quantity ~�s is known as the maximuma posteriori

probability (MAP) of �s. Expanding g(�s) about ~�s,
we obtain

g(�s) � g( ~�s) +�
1

2
(�s � ~�s)

tA(�s � ~�s) (7)

where A is the negative Hession of g(�s) evaluated at
~�s. Substituting Equation 7 into Equation 6, integrat-
ing, and taking the logarithm of the result, we obtain
the LaPlace approximation:

log p(DjSh) � log p(Dj ~�s; S
h) + logp( ~�sjS

h)

+
d

2
log(2�)�

1

2
log jAj (8)

where d is the dimension of g(�s). For a Bayesian
network with discrete variables, this dimension is typ-
ically the number of parameters of the network struc-
ture,

Qn

i=1

Qqi
j=1 qi(ri � 1).1 Kass et al. (1988) have

shown that, under certain regularity conditions, er-
rors in this approximation are O(1=N ), where N is
the number of samples in D.

A more e�cient but less accurate approximation is ob-
tained by discarding O(1) terms from Equation 8. We
obtain

log p(DjSh) � logp(Dj�̂S ; S
h) �

d

2
logN (9)

where �̂S , is the maximum likelihood (ML) value of
�s: the (vector) value of �s for which p(Dj�s; S

h) is a
maximum. This approximation is called the Bayesian
information criterion (BIC), and was �rst derived by
Schwarz (1978).

The BIC approximation is interesting in several re-
spects. First, it does not depend on the prior. Con-
sequently, we can use the approximation without as-
sessing a prior.2 Second, the approximation is quite

1Sometimes, when insu�cient data is observed, this di-
mension can be lower. See Geiger et al. (1996) for a
discussion.

2One of the technical assumptions used to derive
this approximation is that the prior be non-zero almost
everywhere.

intuitive. Namely, it contains a term measuring how
well the model predicts the data (logp(Dj�̂S ; S

h))
and term that punishes the complexity of the model
(d=2 logN ). Third, the BIC approximation is ex-
actly the additive inverse of the Minimum Descrip-
tion Length (MDL) scoring function described by Ris-
sanen (1987). The MDL of a network structure is
the sum of the number of bits required to encode the
data given the model (which decreases with increasing
model complexity) and the number of bits required
to encode the model (which increases with increasing
model complexity).

Draper (1993) suggests another O(1) approximation
to Equation 8, in which the term d

2
log(2�) is retained:

logp(DjSh) � log p(Dj�̂S ; S
h) �

d

2
logN +

d

2
log(2�)

(10)
He mentions that, according to his experience, this
approximation is better than the BIC. We shall refer
to Equation 10 as the Draper scoring function.

To compute the LaPlace approximation, we must com-
pute the negative Hession of g(�s) evaluated at ~�s.
Meng and Rubin (1991) describe a numerical tech-
nique for computing the second derivatives. Raftery
(1995) shows how to approximate the Hession using
likelihood-ratio tests that are available in many sta-
tistical packages. Thiesson (1995) demonstrates that,
for discrete variables, the second derivatives can be
computed using Bayesian-network inference.

When computing any of these approximations, we
must determine ~�s or �̂s. One technique for �nding
a maximum is gradient ascent, where we follow the
derivatives of g(�s) or the likelihood to a local maxi-
mum. Russell et al. (1995) and Thiesson (1995) dis-
cuss how to compute derivatives of the likelihood for
a Bayesian network with discrete variables.

A more e�cient technique for identifying a local MAP
or ML value of �s is the EM algorithm (Dempster,
Laird, & Rubin, 1977). Applied to Bayesian networks
for discrete variables, the EM algorithm works as fol-
lows. First, we assign values to �s somehow (e.g., at
random). Next, we compute the expected su�cient

statistics for the missing entries in the data:

E(Nijkj�s; S
h) =

NX
l=1

p(xki ;pa
j
i jxl; �s; S

h) (11)

When Xi and all the variables in Pai are observed in
sample xl, the term for this sample requires a trivial
computation: it is either zero or one. Otherwise, we
can use any Bayesian network inference algorithm to
evaluate the term. This computation is called the E

step of the EM algorithm.



Next, we use the expected su�cient statistics as if they
were actual su�cient statistics from a complete ran-
dom sampleD0. If we are doing a MAP calculation, we
compute the values of �s that maximize p(�sjD0; Sh):

�ijk =
E(Nijkj�s) + �ijk
E(Nijj�s) + �ij

If we are doing an ML calculation, we compute the
values of �s that maximize p(D0j�s; S

h):

�ijk =
E(Nijkj�s)

E(Nij j�s)

This assignment is called the M step of the EM al-
gorithm. Dempster et al. (1977) showed that, under
certain regularity conditions, iteration of the expec-
tation and maximization steps will converge to a lo-
cal maximum. The EM algorithm assumes parameter
independence,3 and is typically used whenever the ex-
pected su�cient statistics can be computed e�ciently
(e.g., discrete, Gaussian, and Gaussian-mixture distri-
butions).

In the EM algorithm, we treat expected su�cient
statistics as if they we actual su�cient statistics. This
use suggests another approximation to the marginal
likelihood:

log p(DjSh) � logp(D0jSh) (12)

where D0 is an imaginary data set consistent with the
expected su�cient statistics computed in the last it-
eration of the EM algorithm. We call this scoring
function the marginal likelihood of the expected data or
MLED. For discrete variables, MLED is given by the
logarithm of the right-hand-side of Equation 5, where
Nijk is replaced by E(Nijkj�̂s).

One di�culty with this scoring function is that it does
not necessarily converge to the BIC for large data sets.
That is, this scoring function is not asymptotically cor-
rect. A simple modi�cation of this scoring function
that does converge is given by

logp(DjSh) � logp(D0jSh) + log p(Dj�̂s; S
h)

� log p(D0j�̂s; S
h) (13)

Equation 12 was �rst proposed by Cheeseman and
Stutz (1995) as a scoring function for AutoClass, an
algorithm for data clustering. We shall refer to Equa-
tion 13 as the Cheeseman-Stutz (CS) scoring function.
We note that both the MLED and SC scoring func-
tions can easily be extended to the directed Gaussian-
mixture models described in (Lauritzen & Wermuth,
1989) and to undirected Gaussian-mixture models.

3Actually, some parameter sets may be equal, provided
these sets are mutually independent.

3 Experimental Design

In our experiments, we evaluated the relative accuracy
of the CS, Draper, MLED, and BIC scoring functions
as approximations to the marginal likelihood, using
synthetic models containing a single hidden variable.
In our evaluation, we used the LaPlace approxima-
tion as the gold standard. That is, we compared the
marginal likelihood as approximated by each scoring
function with the marginal likelihood as approximated
by the LaPlace approximation. We used the LaPlace
approximation as a gold standard, because it is prov-
ably more accurate than the BIC and Draper mea-
sures. We note, however, that no theoretical work has
been to do show that the CS or MLED approximations
are better or worse than the LaPlace approximation,
and our experiments did not rule out either the pos-
sibility. Furthermore, the regularity conditions under
which the LaPlace approximation is valid (i.e., accu-
rate to order 1=N ) may have been violated in some of
our experiments.

For reasons discussed in Section 4, we limited our
synthetic networks to naive-Bayes models for dis-
crete variables. A naive-Bayes model for variables
fC;X1; : : : ; Xng encodes the assertion thatX1; : : : ; Xn

are mutually independent, given C. The network
structure for this model contains the single root node
C and leaf nodes Xi each having only C as a parent.
(We use the same notation to refer to a variable and
its corresponding node in the network structure.) We
generated a variety of naive-Bayes models by varying
the number of states of C (c) and the number of ob-
served variables n (all of which are binary). We deter-
mined the parameters of each model by sampling from
the uniform (Dirichlet) distribution (�ijk = 1).

We sampled data from a model so as to make the root
node C a hidden variable. Namely, we sampled data
from a model using the usual Monte-Carlo approach
where we �rst sampled a state C = c according to
p(C) and then sampled a state of each Xi according
to p(XijC = c). We then discarded the samples of C,
retaining only the samples of X1; : : : ; Xn.

In a single experiment, we �rst generated a model for a
given n and c, and subsequently a data set for a given
sample size N . Next, we approximated the marginal
likelihood for that data set given a series of test models
that were identical to the synthesized model, except we
allowed the number of states of the hidden variable to
vary. Finally, we compared the di�erent approxima-
tions of the marginal likelihood.

As described by Equation 8, we evaluated the LaPlace
approximation at the MAP of �s. To simplify the com-
putations, we also evaluated the CS, MLED, Draper,
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Figure 1: Log marginal likelihood (determined by the
LaPlace approximation) as a function of the number
of states of the hidden variable for � = 0:1; 0:01; and
0:001. (n = 64; c = 4; N = 400.)

and BIC measures at the MAP. We used the method
of Thiesson (1995) to evaluate the negative Hession of
g(�s).

We initialized the EM algorithm as follows. First, we
initialized 64 copies of the parameters �s at random,
and ran one E and M step. Then, we retained the 32
copies of the parameters for which g(�s) was largest,
and ran two EM iterations. Next, we retained the 16
copies of the parameters for which g(�s) was largest,
and ran 4 EM iterations. We continued this proce-
dure four more times, until only one set of parameters
remained.

To guarantee convergence of the EM algorithm, we
performed 200 EM iterations following the initializa-
tion phase. We checked convergence by examining the
relative change of g(�s) between successive iterations.
In all of experiments, the relative change fell below
0.0001 in less than 125 iterations. In 70 out of our 85
experiments, the relative change fell below 0.0001 in
less than 30 iterations.

We assigned Dirichlet priors to each parameter set �ij.
We used the almost uniform prior �ijk = 1+�, because
it produced local maxima in the interior of the param-
eter space. (The traditional LaPlace approximation
is not valid at the boundary of a parameter space.)
To test the sensitivity of our results to �, we gener-
ated 400 samples from a naive-Bayes model with a
4-state hidden root node and 64 observed binary vari-
ables. We then computed the log marginal likelihood
of test models with 2 to 8 hidden states, using the
LaPlace approximation. Figure 1 shows the results for
� = 0:1; 0:01; and 0:001. The results are relatively in-
sensitive to �; and we used � = 0:01 in all subsequent
experiments.

All experiments were run on a P5 100MHz machine
under the Windows NTTM operating system. The al-

gorithms were implemented in C++.

4 Results and Discussion

We conducted three sets of comparisons for di�erent
values of c (number of states of the hidden variable), n
(number of observed variables), and N (sample size).
In our �rst set of experiments, we �xed c = 64 and
N = 400 and varied n. In particular, we generated
400-sample data sets from four naive-Bayes models
with 8, 16, 32, and 64 observed variables, respectively,
each model having a hidden variable with four states.
Figure 2 shows the approximate log marginal likeli-
hood of the data given test models having hidden vari-
ables with two to eight states. (Recall that each test
model has the same number of observed variables as
the corresponding generative model.)

In our second set of experiments, we �xed n = 64
and N = 400, and varied c. In particular, we gener-
ated 400-sample data sets from four naive-Bayes mod-
els with c = 32; 16, 8, and 4 hidden states respectively,
each model having 64 observed variables. Figure 3
shows the approximate log marginal likelihood of the
data for test models having values of c that straddle
the value of c for the generative model.

In our third set of experiments, we �xed n = 32 and
c = 4, and varied N . In particular, from a naive-
Bayes model with n = 32 and c = 4, we generated four
databases with sample sizes (N ) 100, 200, 400, and
800, respectively. Figure 4 shows the approximate log
marginal likelihood of the data for test models having
hidden variables with two to eight states.

Overall, the CS and LaPlace measures were extremely
close for all values of n, c, and N ; the MLED and
LaPlace measures were close except for small values
of n; the Draper and LaPlace measures were close ex-
cept for large values of c; and the BIC and LaPlace
measures were the most di�erent.

These accuracy results must be balanced against
the computational costs of the various approxima-
tions. The computational complexities of CS, MLED,
Draper, and BIC are dominated by the complexity of
the MAP computation, given by O(dN ). Assuming
N > d, the computational complexity of LaPlace is
dominated by that of Hessian computation, given by
O(d2N ). To appreciate the constants of computational
cost, the run times for the experiment n = 64; c =
32; N = 400 are shown in Table 1. Thus, according
to our experiments, the CS measure is the most cost
e�ective.

The trends in the marginal-likelihood curves as a func-
tion of n, c, and N are not surprising. For each ap-
proximation, the curves become more peaked about
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Figure 2: Approximate log marginal likelihood of the data given a test model as a function of the number of
hidden states in the test model. The 400 sample data sets were generated from naive-Bayes models with n
observed variables and 4 hidden states.

Table 1: Algorithm runtime (seconds) as a function
of the number of hidden states of the test model (h).
(n = 64; c = 32; and N = 400).

h LaPlace CS MLED Draper BIC
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?
? ? ? ? ? ?

the value of c (the number of hidden states in the
generative model) as N and n increase, and as c de-
creases. The �rst result says that learning improves as
the amount of data increases. The second result is a
reection of the fact that larger numbers of observed
variables provide more evidence for the identify of the
hidden variable. The third result says that it becomes
more di�cult to learn as the number of hidden states
increases.

In our analysis, we have used the LaPlace approxima-
tion as a gold standard under the assumption that this
scoring function is the most accurate of the measures.
To investigate this assumption, we reanalyzed the data
using an alternative gold standard. In particular, for

each experiment, we computed the di�erence between
the number of states of the hidden variable in the gen-
erative model (c), and the number of states of the hid-
den variable in the test model having the largest ap-
proximate marginal likelihood. This di�erence, which
we call �c, reects the error made in performingmodel
selection with a particular scoring function. The re-
sults are shown in Table 2. To our surprise, the CS
and MLED measures selected the true number of hid-
den states more often than did the LaPlace measure,
suggesting that these measure may be more accurate
than the LaPlace approximation. An alternative ex-
planation of these results is that the LaPlace approxi-
mation is more accurate, but that errors introduced by
the gold standard cancel errors in the CS and MLED
measures. Namely, it may be that|due to the noise
in the data|the test model with the largest (correct)
marginal likelihood has fewer hidden states than does
the generative model, but the CS and MLED measures
are punishing model complexity too little. Nonethe-
less, these results suggest that the theoretical prop-
erties of the CS and MLED measures should be ex-
amined. Another interesting observation in Table 2 is
that all di�erences are non-positive. This observation
suggests that either there are errors introduced by the
gold standard, or the asymptotic approximations tend
to punish model complexity too much.
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Figure 3: Approximate log marginal likelihood of the data given a test model as a function of the number of
hidden states in the test model. The 400 sample data sets were generated from naive-Bayes models with 64
observed variables and c hidden states.

Our �ndings are valid only for naive-Bayes models with
a hidden root node. These results are important, be-
cause they apply directly to the AutoClass algorithm,
which is growing in popularity. Also, it is likely that
our results will extend to models for discrete variables
and data sets where each variable that is unobserved
has an observed Markov blanket. Under these condi-
tions, each Bayesian inference required by the scoring
functions (e.g., Equation 11) reduces to a naive-Bayes
computation. Furthermore, we see no reason, a priori,
why our results will not generalize to arbitrary net-
work structures and Gaussian-mixture distributions.
Nonetheless, more detailed experiments are warranted
to address models with more general structure and
non-discrete distributions.

5 Reality Check

In our analysis of scoring functions for hidden-variable
models, we have made an important assumption.
Namely, we have assumed that, when the true model
contains a hidden variable, it is better to learn by
searching over models with hidden variables than those
without hidden variables. This assumption is not triv-
ially correct. Given a naive-Bayes model for the vari-
ables C;X1; : : : ; Xn, the joint distribution for these
variables can be encoded by a Bayesian network with-

out hidden variables. (Assuming there are no acci-
dental cancellations in the probabilities, this Bayesian
network will be completely connected.) Thus, we can
attempt to learn a model containing no hidden vari-
ables, and this model may be more accurate than that
learned by searching over naive-Bayes models having
a hidden root node.

We tested our assumption as follows. First, we gen-
erated a naive-Bayes model with n = 12 and c = 3.
From this model we generated a database of size 800,
discarding the observations of the variable C. Sec-
ond, we learned a single naive-Bayes model containing
a hidden root node using our experimental technique
described in the previous section. In particular, we
varied the number of hidden states of the naive-Bayes
model, and selected the one with the largest (approx-
imate) marginal likelihood. (In this case, all scoring
functions yielded the same model: one with three hid-
den states). Third, we learned a single model contain-
ing no hidden variables using the approach described
in Heckerman et al. (1995). In particular, we used
the BD scoring function with a uniform prior over
the parameters in conjunction with a greedy search
algorithm (in directed-graph space) initialized with
an empty graph. Finally, we measured the cross en-
tropies H(pg ; ph) and H(pg ; pn), where pg, ph, and
pn are the joint distributions over the observed vari-
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Figure 4: Approximate log marginal likelihood of the data given a test model as a function of the number
of hidden states in the test model. The data sets of size N were generated from naive-Bayes models with 32
observed variables and 4 hidden states.

ables as determined by the generative, hidden, and
non-hidden models respectively. Repeating this exper-
iment �ve times, we obtainedH(pg; ph) = 0:023�0:003
and H(pg; pn) = 1:28 � 0:45, respectively. In addi-
tional experiments, we found that di�erences between
H(pg; ph) and H(pg; pn) increased as we increased the
size of the models.

6 Conclusions

We have shown that the CS scoring function is an accu-
rate and e�cient approximation for the marginal like-
lihood of a Bayesian network. Although we conducted
our experiments on discrete-variable naive-Bayes mod-
els, the CS measure is easily generalized to any (di-
rected or undirected) graphical model for Gaussian-
mixture distributions, and it is not unreasonable to
expect that our conclusions will hold for these more
general models.
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