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ABSTRACT
We consider the problem of identifying the consensus rank-
ing for the results of a query, given preferences among those
results from a set of individual users. Once consensus rank-
ings are identified for a set of queries, these rankings can
serve for both evaluation and training of retrieval and learn-
ing systems. We present a novel approach to collecting the
individual user preferences over image-search results: we use
a collaborative game in which players are rewarded for agree-
ing on which image result is best for a query. Our approach
is distinct from other labeling games because we are able
to elicit directly the preferences of interest with respect to
image queries extracted from query logs. As a source of rel-
evance judgments, this data provides a useful complement
to click data. Furthermore, the data is free of positional
biases and is collected by the game without the risk of frus-
trating users with non-relevant results; this risk is prevalent
in standard mechanisms for debiasing clicks. We describe
data collected over 34 days from a deployed version of this
game that amounts to about 18 million expressed prefer-
ences between pairs. Finally, we present several approaches
to modeling this data in order to extract the consensus rank-
ings from the preferences and better sort the search results
for targeted queries.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—selection process

General Terms
Algorithms, Performance

Keywords
preference judgments, learning preferences

1. INTRODUCTION
In many information retrieval applications, we desire to

rank items in relation to an information need or task. The
purpose may be to display directly the ranked items to a
user of the system or to use the ranking as an intermediate
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step in another algorithm. Applications of ranking predic-
tion include image search, ad hoc web search, recommender
systems, ordering e-mail and a host of other problems. Of-
ten in these tasks, little attention is paid to the challenge of
how to reliably identify what ranking should serve as ground
truth for training and evaluation purposes. That is, what
ranking of the retrieved set would best satisfy all users?

While the standard approach to ranking has been to rank
items according to their relevance [14], and in particular top-
ical relevance [4], an item may be preferred by a user based
on a variety of other characteristics including quality, au-
thoritativeness, and readability; these characteristics may
be seen as defining a broader notion of relevance that incor-
porates the context of a task. For image search—which is the
primary ranking task considered in this paper—a user may
prefer an image because of its focus, composition, artistry,
or a variety of other dimensions.

Ranking systems are typically constructed with data con-
sisting of explicit relevance judgments for a set of training
items. One approach to getting this training data is to elicit
relevance judgments from a small number of “expert” judges
or editors in a controlled setting. A difficulty of this ap-
proach is that, due to query ambiguity and personal pref-
erences, it may be difficult for any single person except the
query issuer to accurately judge the relevance of results.

An alternative approach to data collection is to sample
judgments from a large population resembling the user base.
This has motivated much of the research on mining click
data. While click data has undeniable value, most notably
because it comes from the issuer of the query, it also has
potential weaknesses. In particular, items that have not
been displayed cannot be clicked, and the lack of a click
is often not informative because the search page itself may
satisfy the information need. This latter problem is even
more of a concern in image search because the search result
page typically consists of actual images (potentially scaled
down). Furthermore, if the designers of a ranking system
experiment with the live system by (e.g.) swapping items or
placing potentially non-relevant results in the top of the list
[12, 13], there is a risk of frustrating the user and prompting
him to switch search engines.

In this work, we attempt to solve the data-acquisition
problem in the domain of image search with a social labeling
game [19]. The game, which we describe in detail in Section
3.1, pairs two participants on the internet who are shown a
sequence of queries and corresponding sets of image results;
they are both asked to choose the best image for each query,
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and every time they agree they are awarded credits. After
collecting enough credits, they may turn the credits in for
prizes. Assuming participants are primarily seeking credits
or prizes, the incentive mechanism encourages users to give
their actual opinion of the best image because it is a good
way to achieve agreement with high likelihood.

We study several probabilistic models that can be used to
convert the preference data that results from game play into
a set of relevance scores for the items; these relevance scores
can be used for evaluating an existing system, training a new
ranking algorithm, or simply improving the retrieval set for
the particular queries in the data.

In the remainder of the paper, we first give an overview
of related work, including a more in-depth discussion of why
current social labeling games fall short, and a survey of pref-
erence-learning models of particular relevance to this work.
We then present a detailed description of our labeling game.
Next, we present several methods for mining the resulting
preference data to learn rankings. Then, we present our
results and discuss their implications. Finally, we conclude
with a discussion of interesting future directions.

2. RELATED WORK
There have been a number of human-computation games

developed for the purpose of collecting data. Arguably the
most successful such game is the ESP Game [19], where as
a result of game play, participants produce descriptions of
images. Others include Peekaboom [20], where the players
produce data about where objects are located in an image,
and TagATune [10] where players produce descriptions of
sounds and music.

The image-description data produced by the ESP game
could in principle be used to help infer ranking quality; for
example, if players annotate one image with “dog” more of-
ten or sooner than a second image, we might reason that
the first image is a better result for the query “dog”. One
problem with this approach is that the descriptions that are
associated with an image are determined by the players and
not the game designer. A second problem is that, because
players can earn more points in the ESP game if they match
quickly, there is incentive to provide very short and obvious
descriptions that may not be very informative (e.g., preva-
lent colors in the images). That is, it is not clear that the
task of trying to get a match with a partner on tags (which
leads one to give common tags) maps closely to asking for
the tags for which this image is one of the most relevant re-
sults. Instead, the ESP game is most suited for addressing
the indexing aspect of search (identifying a large set of rel-
evant items) while our approach targets the ranking aspect
(how to only present a small subset of very relevant items
out of a large number of matching items).

While obtaining absolute relevance judgments over a par-
ticular image/query pair may seem like a better way to ob-
tain judgments, Carterette et al. [2] demonstrate that abso-
lute judgments are less reliable in terms of agreement with
other assessors than pairwise preferences, i.e., relative com-
parisons between two items. In Section 4.2, we discuss sev-
eral methods that are based on pairwise preferences.

In terms of preference learning, Carterette et al. [2] ad-
dress how to infer a ranking given only a linear number of
preferences from a single assessor but do not address how
to use preferences across a population of users. Fürnkranz
and Hüllermeier [7] present a study on breaking label pref-

erence ranking (e.g., predicting order of preferred classes in
a multiclass classification problem) into a series of binary
classification tasks [7]. The primary issue that concerns us
here, however, is one of instance-preference ranking. Chu
and Ghahramani [3] propose a Gaussian-process model ap-
plicable to both instance and label preference learning. The
model is most similar to the Go model we present but does
not have some of the flexibility to model player abilities.

If we consider the challenge proposed here as learning to
predict the preferences of all users given a small sample of
users, one natural solution is to consider averaging the pref-
erences of the users in the training set and then extracting
the optimal ranking for the averaged preferences to predict
on the testing set. Cohen, Schapire, and Singer [5] demon-
strated that the problem of extracting the optimal ranking is
NP-complete, and whereas they provide useful approxima-
tion algorithms for this, we are more focused on the second
question of how well this generalizes to the full population.
Similarly, as alternate models to those presented here, we
could consider this a task of rank aggregation [6] and apply
rank aggregation methods to extract the consensus ranking.
Whereas a number of these approaches would require rank-
ings from users instead of preferences, these rankings could
easily be extracted from the preferences first (e.g. run quick-
sort for each user). We note that in our setting, we do not
ask directly for rankings because the increased complexity in
the task both increases noise in response and interferes with
the fast-paced excitement of the game. Finally, Joachims [9]
proposes ranking SVMs for preference learning and applies
them to preference learning using click data. Our work is
most similar in flavor to this, but we deviate in both the
source of our data and the scale.

In contrast to previous work on social labeling games, our
work is the first to use queries drawn from search logs to
drive image rankings. As a result, the language distribution
actually seen on the search engine drives the labeling. Fur-
thermore, ours is the first attempt to study the suitability
of large-scale preference data as a signal to augment other
sources of relevance information such as click data and as-
sessor judgments. In particular, our approach is unique in
its ability to obtain information like click data but with po-
sitional biases removed and with no risk of frustrating users
when given non-relevant results. Finally, from a learning
perspective, we contribute a systematic study of a number
of preference models.

3. PREFERENCE COLLECTION AS GAME
Picture This is a collaborative game where pairs of players

are rewarded for agreeing on the best result for image-search
queries. In this section, we describe the game in detail. Cur-
rently the game can be accessed online via http://club.

live.com/Pages/Games/GameList.aspx?game=Picture_This.

3.1 Game Play
When a user starts the Picture This game he is first paired

with a random partner. If no human player is available
within a few seconds of the player starting the game, the
player is assigned a robot as a partner; we describe robots in
detail in Section 3.3. The two players then proceed through
a set of rounds, working together for either two minutes
or until they reach 100 points, whichever comes first. The
players are synchronized such that the next round starts
only when both players have completed the current round.
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Figure 1: The Picture This game interface. The query

shown at the top is “Microphone” with eight candidate

images. The green boxes in the grid at the top right

show how many of the 100 possible points the player has

earned; the orange boxes with diamonds show how many

points will be earned on agreement (i.e., k). In this case,

the partner has made his selection (indicated in lower

right corner) and is waiting for this player to choose.

In each round, the two players are shown a query and two
different random permutations of the same set of k images.
The images are permuted both to eliminate positional bias
in the preference data and, as we discuss in Section 3.4, to
mitigate against fraud. k is initially set to three and changes
throughout the game. Each player selects the image that,
in his opinion, best matches the query. If the two players
agree on the best image, they are both awarded k points
and k is incremented by one if k < 9. If the players disagree
on the best image, they are awarded zero points and k is
decremented by one if k > 2. Thus the number of images
displayed varies from 2 to 9 depending on player actions:
when users agree, the number of images displayed (and the
difficulty of the game) increases, and when users disagree,
the number of images displayed decreases. Adapting the
game difficulty to a player’s performance allows us to both
(1) take advantage of discerning players by effectively getting
more preference judgments per click and (2) make the game
more entertaining.

Players have the option to choose “no good image” to indi-
cate that none of the images are a good result for the query.
If either player chooses this option, the number of images k
is incremented or decremented as usual depending on agree-
ment, but no points are awarded for agreement. We discuss
this decision further in Section 3.4. Players can also flag in-
dividual images as being “bad”. If two players flag the same
image as “bad”, then they are awarded a time bonus of five
seconds if they also agree on the best image. Flag matches
are not rewarded if the players agree on “no good image”.

In Figure 1 we show what the game interface looks like
when a player is choosing an image. Note that the interface

indicates in the lower right corner that the partner has al-
ready chosen. After the player makes his own selection, his
partner’s choice will be revealed.

After two minutes has passed or the pair of players has
attained 100 points, the game ends. For players signed into
the game site, these points are converted into a currency that
can be spent on various items including t-shirts, computer
hardware, computer software, and music. Players then have
three options: they can choose to play again with the same
partner, they can choose to play again with a new partner,
or they can quit the game. If one player requests to play
again with the same partner, that partner is given a choice
to either accept or reject the invitation.

3.2 Query and Image Selection
The queries shown for each round in a game of Picture

This are chosen randomly from a specific list. This list is
updated over time, but the data that we analyze in this pa-
per results from game play when the list contained a specific
set of 427 queries that were both of interest to the image-
search team and were appropriate for a public game (e.g.,
they were not likely to return offensive images).

The candidate images for the query in each round are the
top 50 results extracted from Live Image Search. One could,
of course, use different values of n as the number of top
images from which to select. We were partially guided by
the differences in image search from web search. In a variety
of commercial search engines, the default is to display 21-35
images as the first page of results, organized into a matrix-
like format rather than a single list. Thus, we chose an n
large enough to find relevant images which should be in the
first page but are not currently, as well as keeping n small
enough to easily get ranking feedback as to the desired full
ordering of the images.

With each image, we store the fraction of rounds in which
that image was chosen best, and we use this fraction as a
simple estimate of image quality; we discuss this model fur-
ther in Section 4.2.1. On each round, we either choose the k
images uniformly at random from the entire set of 50 results,
or we choose a random “base” image and select uniformly at
random from the 2k images that have the smallest difference
in quality estimate from the base image. Rounds in which
images are chosen to be close to a base image are typically
both more difficult for the user and more informative to
the system. We choose between the “hard” method and the
“easy” method randomly, where the “easy” method is cur-
rently applied in roughly a third of the rounds. We did this
to balance making fine-grained distinctions between images
that are close to the same level of relevance with learning
the overall ordering. Note that this is a simple form of active
learning and depending on what the goals of the system are,
a different active learning mechanism can be employed.

We emphasize that both the query and image pool can be
constructed according to a variety of choices. For example,
if no base search engine was available, one might choose to
display a large number of images by default to quickly find
some relevant images, and then compare winners of those
rounds to get a refined ranking. Likewise, if some images
are not currently in the top set, one can inject them into the
result set to find out if they are in fact highly relevant. One
might choose to adopt this strategy if the game is being
used to explore new features for ranking and the injected
images could be images that would be highly ranked if that
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feature is given increased weight. In addition to our data-
collection needs, the choice of the image-selection algorithm
was informed both by architectural constraints in the system
and by the enjoyment of game play.

3.3 Partner Robots
For players who could not be matched with a human part-

ner within a small amount of time after starting the game,
we implemented partner robots. These robots choose images
based on preference estimates in the data, essentially using
the method of Section 4.2.1. Unlike the ESP game [19], hu-
man behavior is not easily mimicked by simply replaying the
choices (and timing) from previous game transcripts because
the number of choices that are available for a query will vary
from game to game. For example, the best image chosen by
a player when two images are shown may be an obviously
bad choice when there are additional more relevant images.

3.4 Incentive Structure and Fraud Mitigation
Because game points have real-world value, there is in-

centive for game players to cheat. In fact, there are entire
discussion boards dedicated to the topic of cheating games
on the Microsoft Live Search Club site. In this section, we
describe a number of design decisions we made in order to
mitigate against this threat.

Because points are awarded based on agreement, most
cheating methods require coordination between two players.
Our first line of defense against these methods is the random
assignment of partners, although a fraudster can attack the
game with several bots that start at the same time in order
to increase the probability of getting a coordinated pair of
players.

As described above, the two players are shown the candi-
date images in different orders and therefore strategies such
as always choosing the first image will be no better than
random selection. Because we do not award points for agree-
ment on the“no good image”selection, the strategy of always
making this choice does not pay off.

We were particularly concerned about defending against
a random-selection strategy. Recall from Section 3.1 that
the number of points earned for agreement is equal to the
number of images shown; this arithmetic progression of the
rewards helps to some degree because—relative to normal
play—the expected value per round is low for random play.
But if the system is attacked by two random-voting (and
quickly voting) bots that are paired together, the total pay-
off could be significant. We have three major lines of defense
against random-voting bots. First, all players are occasion-
ally challenged with a puzzle (a CAPTCHA) that is difficult
for an automated algorithm to pass. Second, the game site
monitors all user-interaction events of the games and applies
a bot-detection algorithm to this data. Finally, we have im-
plemented a number of “honeypot” queries in the game for
which a human has verified that there is an obvious best
image; if a player chooses the wrong image for these queries,
he is flagged as a potential cheater.

4. PREFERENCE MODELS

4.1 Data Representation
As described in Section 3.1, players can choose “no good

image” instead of a best image, and they can also flag indi-
vidual images as being bad. We model these choices in our

preference data by including a virtual “neutral” image for
every query in the data. In particular, whenever a player
selects “no good image”, this is recorded as a preference for
the neutral image over all the candidate images. Similarly,
whenever a player flags an image as bad, we record this as a
preference for the neutral image to that bad image. Finally,
every time a player chooses an image instead of choosing
“no good image” or flagging that image as bad, this is inter-
preted as a preference for the chosen image over the neutral
image. Thus, the neutral image is implicitly a part of every
comparison set. From a modeling perspective, this has the
advantage of making the neutral image serve as an anchor
and ensures that every image that is chosen at least once
or part of a comparison when “no good image” is chosen is
connected in a preference graph.

Now we abstract the representation of a collection of data
to a more general learning setting. For a given query, we
assume there is a set of items I with I = |I| elements; in
our domain, these are all images displayed during the use of
the query in game play plus the virtual “neutral” image de-
scribed above. We will typically refer to the ith element of I
as item i or image i. We are given a set of labeled data per-
taining to the query D = {o1 =

〈
r1,
〈
c1,1, . . . , c1,S(1)

〉〉
, . . . ,

oN =
〈
rN ,

〈
cN,1, . . . , cN,S(N)

〉〉
} consisting of N = |D| obser-

vation records, ok, where S(k) = length(
〈
ck,1, . . . , ck,S(k)

〉
),

rk, ck,l ∈ {1, . . . , I}, and rk ∈ {ck,1, . . . , ck,S(k)}. Each ob-
servation corresponds to the action of one player in a round.
The ck,l are the items being compared in the kth observation
while rk is the item selected from those compared in the kth
observation. For shorthand, we will refer to the tuple of com-
parison items in an observation as Ck =

〈
ck,1, . . . , ck,S(k)

〉
.

4.2 Methods
In this section, we describe three different methods for

modeling the preference data. We chose these models be-
cause of their progression from the most näıve probabilistic
approach one might take with the grossest independence as-
sumptions to increasingly tailored approaches with fewer in-
dependence assumptions. In particular, the frequency model
simply models the global win probability of the image when
it is displayed and does not account for any interaction be-
tween items. The pairwise probability model accounts for
pairwise interactions, but not interactions among the entire
comparison group. Finally, the Go model accounts for in-
teractions among the comparison set by conditioning on the
current example when learning and predicting. In all cases,
the final set of model parameters are linear in the number
of images. We restrict our attention to probabilistic models
because the probabilities are useful for future improvement
of our active-learning and image-selection components.

4.2.1 Frequency Model
Our simplest model for the relevance score si for each

image i is to use the fraction of times image i wins out
of the number of times it appears. We refer to this as the
frequency model. In practice, smoothing is necessary and we
use a Bayesian m-estimate with a uniform prior over chosen
or not chosen and two virtual observations. This simply
reduces to:

P (i chosen | i shown) =
|{Ck | i ∈ Ck, i = rk}|+ 1

|{Ck | i ∈ Ck}|+ 2
(1)

To use this model to predict the probability that i wins
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for some particular comparison set, you can compute:1

P (i = rk | Ck) =
P (i chosen | i shown)∑

j∈Ck
P (j chosen | j shown)

(2)

This results in a model where the predicted winner depends
on how high above the competition the relevant item is pre-
dicted to be. Given a large enough number of random com-
parisons, we expect this model to perform well because, in
the long run, any particular image will have been compared
against all other images a large number of times. Given
non-random samples (e.g., always comparing against very
relevant images would yield a disproportionate number of
losses) or a small number of samples relative to the n2 pairs,
the model does not have the structure to distribute relevance
scores in a transitive manner. Thus, it may not prove the
most ideal choice when the goal is to quickly learn the rank-
ing. Without empirical study, it is unclear what number of
comparisons is needed for it to perform well and whether
more complicated models are justified.

4.2.2 A Pairwise Probability Model
Because we are measuring responses by humans, it is nat-

ural to look to psychometric theory for insights into this
area. Thurstone [16, 17, 18] formulated a general law of com-
parative judgment that hypothesizes a relationship of the
human ability (which has been repeatedly born out in em-
pirical observations) to make pairwise comparisons between
items based on a number of factors such as the actual differ-
ence between the quantities of the two items being judged
(e.g., actual difference in weight when trying to determine
which item is heavier), the variance of the distribution, and
the magnitude of each quantity involved. Under certain as-
sumptions, and using the logistic function as the underlying
distribution, this can be used to derive the Bradley-Terry-
Luce (BTL) pairwise comparison model [1, 11].

In the BTL model, assuming a set of location parameters
si (in our case,“relevance score”parameters), the probability
of selecting one item as being greater (“more relevant”) than
another is modeled as:

P (i � j) =
exp{si − sj}

1 + exp{si − sj}
(3)

To interpret the data as pairwise preferences, we assume
an observation

〈
rk,
〈
ck,1, . . . , ck,S(k)

〉〉
amounts to S(k) − 1

preferences expressing the response item is preferred to each
remaining item, {rk � j | j ∈ Ck, rk 6= j}. For a pairwise
probability model, modeling item i is preferred to item j
(denoted i � j), we assume no mass is reserved for a tie and
that P (i � j) = 1− P (j � i). Given a pairwise probability
model, P (i � j), we assume an observation’s probability is
the product of all expressed pairwise preferences. That is,
the P (ok) =

∏
j∈Ck,rk 6=j P (rk � j). To set the parameters

by maximum likelihood, we must maximize the following
function (see Appendix A):

I∑
i=1

I∑
j=i+1

[
B+

i,j(si − sj)− ni,j log[1 + exp{si − sj}]
]

(4)

1The other obvious use of these terms such as P (i = rk |
Ck) = P (i chosen | i shown)

∏
j∈Ck−i[1 − P (j chosen |

j shown)] would yield a deficient probability model in that
it allocates non-zero probability to zero probability events
because exactly one item must be chosen; we could consider
this model where equality is replaced with proportionality.

where ni,j is the number of times i and j were compared
and i or j won and B+

i,j is the number of times i and j were
compared and i won.

Equation 3 is simply a linear model with a “1” on the win-
ner and a“-1”on the loser, and it turns out that we can use a
standard logistic-regression algorithm to optimize the si val-
ues given training data. In particular, it can be shown (see
Appendix A for a full derivation) that the model is identical
to a two-class (c ∈ {0, 1}) logistic regression model that does
not have a bias term.2 To represent the pairwise model as a
logistic regression problem, each pair of preferences derived
from a comparison set is encoded as a feature vector with the
same number of features as images. All feature values are 0
except for the two features corresponding to the preference
being expressed. The feature with the lower index is set to
1 and the higher to −1. Finally, if the image corresponding
to the feature with the lower index was preferred, the class
is set to 1 and otherwise to 0.

Because of the easy availability of tested code implement-
ing logistic regression, we chose to implement the optimiza-
tion in this way. In both the original pairwise formulation
and in the reduction to logistic regression, it may be ad-
vantageous to introduce a regularizer or prior to deal with
sparse data. We use a L2 regularizer (Gaussian prior) which
will pull the relevance scores of the images to zero unless the
data dictate otherwise. The weight (λ) of the regularizer is 1.
Early experiments in which we investigated optimizing the
regularizer weight over validation data indicated the results
were not particularly sensitive to changes in the regularizer
weight.

Note that Equation 3 can be rewritten as:

P (i � Ck) =
exp(si)∑

j∈Ck
exp(sj)

(5)

where i ∈ Ck for those comparison sets containing two im-
ages. We can also use this equation directly to predict for
comparison sets of more than two images. Assuming the re-
sulting prediction model when training instead of Equation
3 would require the use of a conditional model (conditioning
on the current comparison set). Since Section 4.2.3 presents
an alternative conditional model, we present this to gain an
understanding of whether the conditional model is needed
to gain the majority of the predictive power.

4.2.3 Go Model
The final model was first applied to learning to predict

moves in the board game Go [15] and is related in some
aspects to the TrueSkillTMmodel used to rank and match
players in online gaming [8]. The Go model is a Bayesian
system with conditional online updates that can be under-
stood as a general preference learning algorithm which learns
to predict when the winning item (originally which Go move
is selected) is preferred from a set of items (all Go moves
available given the current board).

There are several interesting properties of the Go model
from a preference modeling point of view. First, the Go
model does not “tie” the parameters of non-winning items.
In contrast, many preference models implicitly or explicitly
treat each preference vote as evidence that the losing items
have the same relevance. The Go model is a conditional

2A non-zero bias yields probabilities such that P (i � j) 6=
1− P (j � i).
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model; the model performs updates for the relevance of an
image conditional on the current set of images being com-
pared. In our progression of independence assumptions, the
Go model is the most general because it can model group ef-
fects when comparing and predicting for a group of images.
Finally, although we do not take advantage of this property
in this work, the model has parameters that can be used
to reflect different players’ knowledge of a query or skill in
making relevance judgments.

Adapted to our application, the Go model works as fol-
lows. A Gaussian belief N(si;µi, σ

2
i ) is maintained about

the relevance score si for each image i. Within each round
of play and for each player, each image is assumed to have an
unobserved relevance value vi (dependent on player interpre-
tation of query, player skill at making relevance judgments,
knowledge of query etc.) which is Gaussian distributed
around the relevance score with fixed variance, N(vi; si, β

2).
Here β2 is a system input parameter. The observed variable
of which image was chosen by the player is assumed by the
model to be computed by choosing the images with the max-
imum latent relevance value vi.

The factor graph for an example with three images (i, j, k)—
where j is chosen as the winner—is shown in Figure 2. For
each observed preference, a factor graph is built and approx-
imate inference is performed to update the Gaussian belief
distribution over relevance scores. This updated belief is
then used as the prior belief distribution in the next up-
date. After all training data is processed, the final system
parameters are the belief distribution parameters µi, σ

2
i and

can be used to perform prediction inference. For use in our
experiments, we use the default initial prior of a standard
Gaussian and β2 = 0.25. The update and inference algo-
rithms are quite efficient and have already been shown to be
applicable in a large-scale online system [8]. More details of
the inference are available in [15].

Figure 2: A factor graph representing how the compar-

ison of three items (i, j, k) where item j was chosen as

the winner depends on the factors (black boxes) in the

model. The values of the indicator functions are rep-

resented as variables whose observed values are used to

update the model parameters by probabilistic inference

over the unobserved variables (gray circles).

For the predictions that concern us, inference is quite sim-
ple. In order to rank the images, one need only sort the
images by the means of their relevance belief distribution,

µi. The pairwise probability that i � j is

P (i � j) = Φ

 µi − µj√
σ2

i + σ2
j + β2

 (6)

where Φ is the cumulative density of a zero-mean unit-variance
Gaussian. To perform inference for comparison sets of more
than two items, expectation propagation can be performed.
A second method of inference that works for all compari-
son set sizes and may be more convenient at times is to use
Monte Carlo simulation and simply sample n times from
the Gaussian belief distributions for those items being com-
pared, followed by sampling from the latent variable dis-
tribution, and, finally, count the proportion of times the
corresponding image had the highest score.

5. EMPIRICAL ANALYSIS
We remind the reader that our primary objective is to

identify a consensus ranking for a query. Thus, while we
could consider alternative models, we focus on the simple
question of whether a ranking extracted from the preferences
of one set of users can predict the preferences of a second
(disjoint) set of users. Thus any model’s success validates
our primary concern. As secondary questions, we consider
other properties of the consensus ranking, e.g. which model
best predicts preferences, which model is better given limited
data, etc.

In the deployment of the game, there are two primary
servers that have independent state controlling the active
learning algorithm that handles image and query selection.
For any player with a user ID (i.e., those playing non-anon-
ymously), the player is assigned permanently to one server
and only plays on that server. Because credits can only
be collected for non-anonymous play, this constitutes the
vast majority of use. Splitting users by server allows us to
create a training and a test set that are essentially inde-
pendent of any single user’s action. In addition, no state
is shared between the servers. Thus, although an active
learning component is used for image selection, the model
that is updated on the test server is independent of that
on the training server except for those effects dependent on
aggregate assessment of relevance. Because each particular
player’s actions are wholly in the test set or the training set
and no state is shared, good performance indicates we are
learning a general consensus view of relevance for the im-
ages and not just some particular player’s view or the view
of those on the training server.

In this study, our goal is to predict—using the data from
the training server—the choice behavior on the test server
restricted to those choices in which the two players agree.
We restrict the test set to agreement-only cases because we
assume that agreement signifies a trustworthy signal about
the relevance of the images. In future studies, we intend
to identify trustworthy players explicitly and include all of
their data.

5.1 Data
For each round of the game, we record in a database the

query, the candidate images, the selections for each player,
and the timing information for each player. We also store
a unique identifier for each round so that we can check for
agreement.
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To prepare the data for experimentation, we first removed
all robot preference judgments, resulting in the raw versions
of the training set and the test set. Next, we created agree-
ment versions of both the training set and the test set that
only included preference judgments corresponding to part-
ners who agreed. For these agreement versions of the data
sets, we retained a single preference representing each pair of
judgments that agreed, and we removed all other judgments.
Note that agreements with robots were not included in the
agreement data due to the robot judgments being removed
initially.

To test our models, we used only the agreement version of
the test data. For training, we experimented both with the
agreement version and the raw version of the training set.
We use the raw version of the training set to test whether
we can boost performance on the high-quality judgments by
including noisy judgments.

As mentioned in Section 3.2, there are 427 queries for
which we collected preferences over 34 days.3 There are an
average of 95 images per query (94 + virtual “neutral im-
age”).4 Tables 1 and 2 summarize basic data characteristics.

There was a 49% agreement rate in the training set5 among
the human-human rounds. Because on average 3.53 actions
were available per round, random clicking would be expected
to achieve a 28% agreement rate. Likewise, there was 50%
agreement in the human-human test set rounds with random
clicking expected to achieve a 28% agreement rate. Thus,
humans agree far more often than can be expected from
random clicking.

Games Rounds Human-Human Rounds

Train 154,060 1,491,206 1,144,409
Test 155,322 1,522,375 1,159,570

Table 1: Data properties before preprocessing. Counted

rounds have at least one response.

Preferences Pairwise Pref. No Good Image

Raw Train 2,599,531 8,860,418 25,002

Raw Test 2,645,984 9,267,890 21,682

Agree Train 2 × 537,651 2 × 1,731,317 2 × 1,800

Agree Test 2 × 555,202 2 × 1,838,987 2 × 1447

Table 2: Properties after removing robot preferences

(raw) and retaining only human-human agreements.

5.2 Performance Measure
The performance measure we examine here is a measure

of each method’s ability to correctly predict the preference
choice that was made during a game. This performance mea-
sure has the advantage that if multiple images are considered
good matches for the query, the measure will be implicitly
weighted by the proportion of the population’s preferences
for one image over the other.

3A version of the data suitable for preference learning
is available at http://go.microsoft.com/?linkid=9648573
for use in research experiments.
4Although the game selects from the top 50 images, the
results returned by the search engine change over time.
5Note only a single preference is retained per agreement and
human-robot pairs were discarded.

We present error in predicting preference choice relative to
our baseline, Live Image Search. Relative error is computed
as:

errormethod

errorbaseline
(7)

If the baseline is outperformed then relative error is between
0 and 1 with closer to 0 signifying increasing performance
over the baseline. For example, a relative error of 0.33 would
indicate that the method commits three times fewer predic-
tion errors than the baseline.

To compute the baseline, we use the ranking of the images
after game data collection (thus the baseline is optimistic)
and predict the item ranked highest in the search results
will be chosen. If images have dropped out of the index, we
assume any other image in the index is preferred to them.

Note that we do not compute other search metrics like
DCG because those rely on having a gold-standard ranking
or graded relevance judgments to begin with. Furthermore,
the preference error we give here is the natural extension
of Kendall’s tau (percentage of pairs correctly ordered over
total pairs considered) which is appropriate for measuring
the distance between two rankings for rank aggregation [6].

5.3 Results
Table 3 presents the performance of models trained on the

agreement training set on the left and the results of models
trained on the raw training set on the right. The best result
in each column is in bold. Again, we emphasize that in all
cases the testing set is the agreement test set.

Because the raw training set yielded the best results for
all methods, we sought to understand how much data was
necessary to achieve good performance. We broke the raw
training set into 5 chunks. Each chunk, numbered 1-5, is
a superset of the previous chunk’s data with approximately
7 days more worth of data. Although the amount of data
added is fairly uniform across each chunk, it can vary some-
what due to variance in the number of players playing and
games played in a day. Therefore, we summarize the actual
number of preferences and effective pairwise preferences for
each chunk in Table 4. The performance for each model is
presented in a learning curve in Figure 3.

5.4 Discussion
At first glance, it may seem surprising that the Frequency

model shows such good performance when using the agree-
ment training set, but as we discussed in Section 4.2.1, given
a large enough number of random comparisons, there is rea-
son to expect it to converge to a good model. In all cases,
all of the models trained on the agreement training set com-
mit twice fewer errors than the baseline search method with
the Pairwise and Go models committing nearly three times
fewer errors. Thus, all methods answer our primary ques-
tion of can a consensus ranking from one set of users be used
to model another. Furthermore, they all improve markedly
over the baseline provided by Live Search.

Next, when considering whether all of the data can be
used, by leveraging potentially noisier judgments in the raw
training set, we see that all models improve using the un-
filtered set. Relative to their performance trained on the
agreement training set, we see the Pairwise and Go models
improve less – perhaps because all models are beginning to
asymptote with the Pairwise and Go model having less room
to improve further. Since all models improve using the un-
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filtered training set, this gives very promising evidence that,
even when there is disagreement, the preferences contain
useful information and offer possibilities for data mining.

Moving on to the learning curve, we gain a variety of in-
teresting insights. First, even with 20% of the data, all
methods perform relatively well compared to the baseline
with the Pairwise and Go models already committing 2.5
times fewer errors than the baseline.

Agreement Training Raw Training

Frequency 0.3713 0.3504
Pairwise 0.3451 0.3335
Go 0.3408 0.3325

Table 3: For each method, error relative to the base-

line of using the search engine’s ranking to predict user

preference on the agreement test set. Using the poten-

tially noisy data in the raw set gains in all cases although

more for the Frequency model which has more room to

improve. The best result in a column is in bold.

Next, we see the frequency model increasingly underper-
forms the other two models with less and less training data.
This likely results from lacking the model structure to im-
plicitly infer relationships like transitivity that are helpful
when fewer pairs have been compared to each other. For this
reason, we would expect this gap to be even larger with less
data. Additionally, because an active learning component
can exacerbate sparsity (by never comparing items believed
to already be far apart), it may have undesirable interactions
with the particular active learning method used. As is well-
known in search, variance in both evaluation and training is
largely due to queries. This is typically handled by building
labeled sets over as large of number of queries as possible.
Therefore a natural goal when using this approach to build
a labeled data set is to try to get the minimal amount of in-
formation per query and cover as many queries as possible;
thus, the frequency model is unlikely to be useful in practice
since it requires more judgments per query.

Additionally, the Pairwise and Go model seem to track
each other well. Thus, in terms of prediction accuracy, the
more general Go model does not seem to offer significant
benefits over the Pairwise model. In terms of probability
prediction, however, it may prove more useful. In addition,
its structure allows for interesting future directions discussed
below. Thus, we believe both the Pairwise and Go model are
good candidates for representing preferences in this domain.

Finally, because the Pairwise model is a simple model that
performs well, we examined how well the rankings it learned
correspond to “expert” editorial judgments. For this, we use
an existing set of 5-point scale editorial judgments that were
previously collected to assess performance over 60 of the 427
queries. Because the editorial judgments can often generate
ties, we use the standard approach using Kendall’s tau of
only considering those pairs for which we had judgments
and for which the editorial judgments assigned different rel-
evance levels to the two images (27299 pairs). Across these,
the Pairwise model had an overall Kendall’s tau of 0.6742
with a median by query of 0.6881. Thus, the quality of the
aggregated consensus game data appears to be quite in line
with that of editorial judges. Additionally, we benefit be-
cause the rankings learned in this manner have a much finer

level of granularity. Finally, in the case of disagreements be-
tween the two, in the authors’ opinion the model learned by
game data often seems superior (mistakes often appear to be
because of lack of editor knowledge) – this is early anecdotal
analysis, however, and we intend to conduct a much more
formal analysis of the nature of disagreements.

6. FUTURE WORK
There are a variety of interesting avenues for future work

related to this paper. One of the most obvious is to continue
to apply the social labeling game framework to other search
scenarios. For example, we can try to construct a game to
be used to improve document ranking for web search. One
challenge the designer faces is that players have an incen-
tive for quick decisions in any situation where time is valu-
able. For image search, we feel that issue has less dissonance
with the underlying task because most image-search tasks
do not require detailed analysis to come to a conclusion of
relative relevance; a document, on the other hand, may take
more careful examination to come to such a conclusion. The
quick-decision incentive may be advantageous in some situa-
tions (e.g., exploring snippet summarization), but its impact
requires careful consideration for each task.

In terms of the models presented here, developing meth-
ods to analyze player performance is quite promising. The
most simple would be to simply identify how accurate a
player is and integrate that into the models. For example,
the Go model supports setting β smaller for players who
are likely to make consistently accurate relevance decisions.
This parameter could also be used to allow the player to
self-assess knowledge of query in some way before seeing the
images (e.g., betting more or less points) and then setting β
as a decreasing function of the player’s self-assessed knowl-
edge. Another interesting challenge is to address the design
of the active learning component that chooses which images
to compare. The system currently uses the basic heuris-
tic described above, but there has been a variety of active
learning work which may be leveraged in this scenario to es-
timate utility in a more principled fashion. In addition, work
on preference-label ranking could be used to construct per-
sonalized models that predict the rankings of images given
characteristics of the user; active-learning techniques would
be relevant here in order to identify which image sets to label
in order to quickly converge to a reasonable model.

7. CONCLUSION
In this work, we demonstrated how queries taken from

search logs can be used to drive a fast-paced and enjoyable
social labeling game. We described how the data resulting
from game play is similar to click data but without issues of
position bias, and is suitable for learning consensus rankings.
We examined a number of preference learning models and
demonstrated large improvements over a commercial search
engine’s ranking. Finally, in an analysis that has implica-
tions for other preference learning problems, we were able
to demonstrate that two of the models (Pairwise and Go)
are suitable for problems with a range of training data sizes
while the third (Frequency) is only suitable when training
data is abundant.
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Chunk Number Pref. Pref/Queries Percent All Pref. Pairwise Pref. Pairwise/Query Percent All Pairwise
Chunk1 657705 1540.29 0.25 2281342 5342.72 0.26
Chunk2 1152449 2698.94 0.44 4037916 9456.48 0.46
Chunk3 1529197 3581.26 0.59 5369399 12574.70 0.61
Chunk4 2201148 5154.91 0.85 7586388 17766.72 0.86
Chunk5 2599531 6087.89 1.00 8860418 20750.39 1.00

Table 4: Description of training chunks used for learning curve. Each chunk is a superset of the previous chunk plus

approximately seven days of data. Since preference judgments where more than two images were compared can be

counted in terms of effective number of pairwise judgments, we present number of pairwise preferences as well.

Figure 3: A learning curve demonstrating how quickly error decreases relative to the baseline for each method with

increasing amounts of training data. The frequency model takes a much larger amount of training data to reach

comparable levels of accuracy. Both the Pairwise and Go model cut the error rate of the baseline by more than a

factor of 2.5× with only 20% (7 days) of data.
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APPENDIX
A. PAIRWISE MODEL DERIVATIONS

In this appendix, we derive results related to the pairwise
model of Section 4.2.2. We assume terminology introduced
throughout the paper and particularly that introduced in
Sections 4.1 and 4.2.2. First, we demonstrate the derivation
of Equation 4. If we desire to set the relevance score param-
eters by maximum likelihood, then we must maximize the
following log-likelihood.

Λ(D) = log

N∏
i=1

∏
j∈{j|j∈{1,...,S(i)},ri 6=ci,j}

P (ri � ci,j)

Let B+
i,j be the number of Ck ∈ D s.t. i, j ∈ Ck, rk = i.

= log

I∏
i=1

I∏
j=1|j 6=i

P (i � j)B+
i,j

Since P (i � j) = 1− P (j � i)

= log

I∏
i=1

I∏
j=i+1

P (i � j)B+
i,j [1− P (i � j)]B

+
j,i

=

I∑
i=1

I∑
j=i+1

[
B+

i,j logP (i � j) +B+
j,i log[1− P (i � j)]

]
Let ni,j = |{Ck | Ck ∈ D, i, j ∈ Ck, (rk = i or rk = j)}|
Note B+

i,j +B+
j,i = ni,j = nj,i

=

I∑
i=1

I∑
j=i+1

[B+
i,j logP (i � j)

+ (ni,j −B+
i,j) log[1− P (i � j)]]

=

I∑
i=1

I∑
j=i+1

[ni,j log[1− P (i � j)]

+ B+
i,j log

P (i � j)
1− P (i � j) ]

=

I∑
i=1

I∑
j=i+1

[ni,j log
1

1 + exp{si − sj}

+ B+
i,j log exp{si − sj}]

=

I∑
i=1

I∑
j=i+1

[
B+

i,j(si − sj)− ni,j log[1 + exp{si − sj}]
]

(8)

Next we demonstrate briefly that given the right encoding
of a labeled example, the model is identical to a two-class
(c ∈ {0, 1}) logistic regression model that does not have
a bias term. That is, a model where P (c = 1 | ~s, ~x) =

exp{~s·~x}
1+exp{~s·~x} and P (c = 0 | ~s, ~x) = 1

1+exp{~s·~x} where ~x is the

feature encoding for a pairwise preference described below.
In particular, the original comparisons should be encoded

in the following way. To represent this as a logistic regres-
sion problem, each comparison set S(i) gets converted to
|S(i)| − 1 labeled examples for logistic regression. Similar
to how a choice was modeled as the pairs of preferences
needed to indicate the chosen item was preferred to each of
the remaining items, each example in the logistic regression
representation will encode one of these preferences. There is
one feature in the model for each of the images. To encode
a preference that i � j, all features are set to zero except for
the ith and jth feature. Then an arbitrary choice is made to
set one of these features to 1 and the other to −1. The class
variable is set to “1” if the image whose feature bit was set
to 1 was chosen, and is set to “0” otherwise. Without loss of
generality, for convenience we will assume that the feature
with the lowest feature index is always set to 1 and the one
with the higher index is set to -1. Thus the class label will
be “1” if the image corresponding to the lower feature index
was chosen and “0” otherwise. Assume we have indices i, j
where the index i < j, then to encode i � j, the ith bit is
set to 1, the jth bit is set to −1 and the class is 1. Now, we
simply must show that maximizing this likelihood results in
the same optimization formula as Equation 8.

N∑
d=1

I∑
i=1

11(i ∈ S(d))

I∑
j=i+1

11(j ∈ S(d)) [11(i = rd)P (1 | ~s, ~x)

+ 11(j = rd)P (0 | ~s, ~x)]

=

N∑
d=1

I∑
i=1

11(i ∈ S(d)) ·

I∑
j=i+1

11(j ∈ S(d)) [11(i = rd) (si − sj)

− (11(i = rd) + 11(j = rd)) log (1 + exp{si − sj})]
Grouping like terms

=

I∑
i=1

I∑
j=i+1

[
B+

i,j(si − sj)− ni,j log[1 + exp{si − sj}]
]

(9)
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